Acceso



Registro de usuarios
Contáctenos
Teoría
Las válvulas de vacío V

He aquí el quinto artículo dedicado a las válvulas de vacío. En él vamos a ver un par de circuitos de receptores de radio básicos con triodos termoiónicos. Analizaremos algunos esquemas que, si bien no tuvieron repercusión práctica comercialmente hablando, si que fueron muy usados y disfrutados por los radioaficionados y estudiantes de electrónica de hace algunas décadas, los cuales experimentaban construyendo circuitos de este tipo.

Comenzaremos estudiando la circuitería y el funcionamiento de un simple receptor con detección por diodo de cristal y amplificación de B.F. por triodo, circuito que no vas a tener problema alguno en entender siempre que hayas leido los artículos anteriores en los que hablamos del receptor elemental. Este tipo de receptor ganaba en sensibilidad y selectividad con respecto al receptor con diodo de cristal que no incorporaba el triodo.

Posteriormente examinaremos un viejo conocido del radioaficionado experimentador, el llamado receptor con detección por placa el cual mejoraba alguna característica del anterior, aunque verdaderamente esta mejora no paliaba la falta de sensibilidad de la que ya adolecía el receptor con detección a diodo simple.

En el próximo artículo le tocará el turno a otros tipos de receptores más avanzados. Pero para poder entender el funcionamiento de estos, deberemos primero conocer como funcionan los primeros. ¿Te atreves a continuar?.

Leer más...
Otros Temas Interesantes
Noticias
Tutoriales electrónicos básicos

Esta obra desarrolla una valiosa información para aquellas personas interesadas en iniciarse en el estudio de la electrónica.

Contiene desde la teoría básica de la electricidad, hasta los amplificadores operacionales y diferenciales, pasando por los componentes pasivos habituales, diodos, transistores bipolares y MOSFET, etc...

Además, resulta interesante la explicación que ofrece su autor sobre las leyes elementales aderezadas con fórmulas simples de asimilar.

Clica en leer completo y échale un vistazo al índice de su contenido.

Leer más...
Radioaficionados
Microfono Turner +3B. ¡Una leyenda!

Alguien dijo en alguna ocasión que "nada en este mundo es absoluto, sino que todo es relativo".

A mucha gente les encanta el color negro, sin embargo a otras les parece un color horrible.

¿Cuantos equipos de futbol existen en el mundo?... Demos por seguro que hay hinchas para todos ellos. Marcas de automóviles, vestimenta, cortes de pelo... Y podríamos seguir poniendo infinitos ejemplos.

Y es que tiene mucho de verdad el famoso dicho que reza así: "para gustos... colores".

Sin embargo, hay ocasiones en que una gran mayoría de personas parecen estar de acuerdo en su manera de pensar con relación a un elemento, cosa o persona. Es entonces cuando eso se convierte en algo muy especial y único por lo complicado y dificil que resulta que acontezca esa circunstancia.

Así de especial y único fue el micrófono Turner +3B no solo para los aficionados a la C.B., incluso también para aquellos que disponían de equipos VHF, UHF y HF.

Hoy te queremos hablar de este legendario y vetusto pero querido, y aún en la actualidad deseado y muy buscado accesorio para una estación de radio.

Leer más...
Miscelanea
Preamplificador para guitarra eléctrica

¿Te gusta tocar la guitarra eléctrica?. Es posible que hasta seas el afortunado poseedor de una de ellas. Sin embargo, quizás no tengas el equipo de sonido adecuado para oirla con la suficiente potencia y calidad.

Esto último lo decimos porque la mayoría de amplificadores y equipos de audio domésticos del mercado no disponen de una entrada convenientemente adaptada a las características del sonido entregado por este instrumento.

Efectivamente, es habitual encontrar en los amplificadores, e incluso en muchas mesas de mezcla, entradas tipo "AUX", "LINE", "CD", "TUNER" o "PHONO", pero pocos son los que tienen una entrada que indique "GUITAR".

Sabedores de esto, hemos pensado que a muchos de vosotros os interesaría fabricaros un pequeño preamplificador, de funcionamiento seguro y con una elevada calidad, que intercalado entre una entrada auxiliar y el mencionado instrumento os permitirá elevar la señal de este último y aplicarla entonces al equipo del que dispongáis para que el sonido en los altavoces tenga el nivel adecuado.

Os presentamos un circuito que con solo dos transistores BJT, seis resistencias y cinco condensadores os permitirá conseguir este objetivo.

¿Por qué no clicas en "Leer completo..." y compruebas la sencillez del dispositivo?.

Leer más...
Práctica
Soldador de temperatura controlada económico

Si es la primera vez que vas a comprarte un soldador es muy probable que te encuentres en una disyuntiva. En primer lugar, no tienes ni idea a que tipo de trabajos vas a enfrentarte y por ese motivo no te decides por una punta determinada.

Después está el tema de la potencia necesaria para el calentamiento: ¿Estarían bien 15W? ¿o quizás serían deseables 30W? ¿Prefieres a lo mejor un soldador de 60W para trabajos de cierta entidad?.

La evidente realidad es que el soldador tendría que elegirse en consonancia con el tipo de trabajo que uno vaya a realizar. Para soldaduras de componentes muy pequeños, delicados y los de tipo SMD es preferible un soldador de punta fina y de unos 15 watios. Sin embargo, si vas a usarlo para trabajos mas generales (componentes estandar, cables de conexión de cierto grosor, etc...) lo mejor sería acudir a uno de más potencia, como por ejemplo 30 watios.

Y si haces montajes que necesiten de alguna soldadura a masa localizada en la propia caja o chasis metálico del aparato que construyes, entonces lo mejor sería uno de 60 watios como poco y con un generoso tamaño de punta que permita el calentamiento de una zona amplia, de manera que esa soldadura no te salga "fria".

La pregunta que surge es: ¿no existe un soldador que permita la consecución óptima de la mayoría de los trabajos que un técnico electrónico realiza normalmente hoy dia?. La respuesta la tienes a continuación.

Leer más...
Teoría
Telegrafía sin hilos - La radio

A pesar de que tanto el telégrafo como el teléfono, utilizando lineas de cables eléctricos, cumplían a la perfección su cometido, el hombre quería más. Debería ser posible poder transmitir de alguna manera la información precisa sin necesidad de utilizar ningún tipo de cableado. De esa manera no existiría la limitación impuesta por los cables, los cuales había que desplegarlos a través kilómetros y más kilómetros de linea. La verdad es que se estaba preparando el camino para el telégrafo sin hilos y la radiotelefonía desde los alrededores de 1870.

Como ocurrió con el telégrafo con hilos, es muy complicado asignar el invento del telégrafo inhalámbrico o el de la radio a una sola persona. Desde James Clerk Maxwell hasta Alexander Stepánovich Popov, pasando por Michael Faraday, Heinrich Rudolf Hertz, Guillermo Marconi, Nikola Tesla y muchos otros científicos de la época contribuyeron con su granito de arena a la consecución del invento.

Los científicos sabían que el primer paso era conseguir producir las llamadas ondas electromagnéticas de alta frecuencia. Posteriormente a eso ya vendría la manera de dominarlas y de amoldarlas convenientemente para conseguir el objetivo, el cual no era otro que la transmisión de información a largas distancias sin necesidad de utilizar tendidos de cables eléctricos. En este artículo hablamos de ello. ¿Nos sigues?.

Leer más...
Noticias
Regulador de potencia R.F. para Superstar 3900

REGULADOR DE POTENCIA R.F. SUPERSTAR 3900

Este video muestra como instalar de forma sencilla un regulador para poder controlar la potencia de salida de RF en AM y en FM en tu emisora Superstar 3900. Con excelente calidad de imagen y sonido, podrás llevar a cabo este proyecto con suma facilidad aunque no tengas conocimientos técnicos. Entra y compruébalo.

Leer más...

La circunferencia, el círculo y el número PI (π)

CircunferenciaLa mayor parte de las personas que vivimos en paises desarrollados, quizás porque estamos acostumbrados a obtenerlo todo con suma facilidad y/o que las cosas vengan a nosotros como caídas del cielo, a menudo las damos por sentadas de manera automática.

Practicamente en ningún momento nos preguntamos porqué algo es o se produce de una determinada manera. Nos basta con saber que tal o cual cosa es como es y punto, lo aceptamos sin reservas.

Algo así nos ha ocurrido a muchos cuando asistíamos a la escuela, en épocas pasadas. ¿Recuerdas cuando aprendiste la fórmula para hallar la longitud de la circunferencia?. ¿O cuando te enseñaron la fórmula para calcular la superficie del círculo?. Todos las aceptamos sin pestañear, y pocos fuimos los que nos preguntamos de donde habia salido el famoso número PI (π). Muchos daban por sentado que aquello era así porque lo decía nuestro profesor de matemáticas y se acabó.

Pero en realidad, esas conocidas fórmulas han salido de algún sitio o, mejor dicho, han sido promulgadas por una o varias personas después de haber dedicado mucho tiempo y esfuerzo al estudio de estas figuras geométricas.

¿Te gustaría saber más sobre este tema y conocer como se han llegado a obtener las mencionadas fórmulas y como están relacionadas entre ellas?... ¡Pues clica en "Leer completo..." ya!.

La historia de la circunferencia y el número PI se remonta aproximadamente al año 2000 a.C., cuando los estudiosos del imperio Babilónico observaron que el perímetro de un círculo era aproximadamente 3 veces superior a su diámetro. Sin embargo, no fueron ellos quienes iniciaron la teoría matemática del número que se establece y evalúa mediante la mencionada relación.

Ese privilegio hemos de adjudicárselo al físico y matemático griego Arquímedes de Siracusa el cual fue capaz, a la sazón, de expresar el número PI con una aproximación más que aceptable y nunca vista hasta ese momento.

Como probablemente sabrás, el número PI (que se representa mediante la letra griega "π") se define como la razón entre la longitud de la circunferencia y su diámetro. Se trata de una simple división, como resultado de la cual siempre se obtiene el mismo número sea cual sea el tamaño que tenga la circunferencia elegida.

Formula de PI

PI es un número irracional, lo que significa que no es posible calcularlo mediante una fracción cuyo numerador y denominador sean números enteros. Tampoco es posible saber su valor exacto ya que, al ser irracional, sus decimales se extienden hacia el infinito sin posibilidad alguna de poder predecir su valor al carecer de un patrón periódico, o sea, un número o grupo de números que se repitan constantemente después de la coma.

Son muchos los genios matemáticos que han intentado calcular el valor de PI con el mayor número de decimales posible, cosa por otra parte tan fatigosa como inútil. Desde Euler hasta los Hermanos Chudnovsky, pasando por el matemático amateur William Shanks el cual dedicó gran parte de su vida a este trabajo logrando 527 decimales exactos. No obstante, para darle al numerito un uso habitual y usando el sentido común bastará con memorizar solo los primeros decimales después de la coma.

Valor de PI

 

Volviendo a la primera de nuestras fórmulas, y sustituyendo la frase "Longitud de la Circunferencia" por la letra "C" mayúscula y la palabra "Diámetro" por la letra "D" también mayúscula, podemos expresarla de la siguiente manera:

Formula de PI

Para despejar "C" tenemos que pasar "D" al miembro de la derecha. Si en el primer miembro "D" está dividiendo al pasar al segundo miembro lo hará multiplicando, por lo que la fórmula queda como sigue:

Formula de la circunferencia

Como el diámetro (D) mide justo el doble que el radio (r), la fórmula anterior queda como indicamos a continuación, forma esta reconocible por todos ya que es la que nos enseñaron en el colegio.

Formula de la circunferencia

Hasta aquí todo ha sido muy sencillo. Hemos visto de donde sale el número PI (π) y, posteriormente, el origen y la formación de la fórmula para calcular la longitud de la circunferencia. Sin embargo sigue habiendo cosas en torno a esta figura geométrica que quizás no sean tan fáciles de ver. Nos referimos al cálculo de la superficie de la parte interior de la circunferencia, o sea, la superficie del círculo.

Todos conocemos la fórmula para hallar una superficie circular pero... ¿conocemos también como se obtiene?... ¿de donde sale?... ¿Como se llega a ella?. Las respuestas en el siguiente subtema.

LA SUPERFICIE DEL CÍRCULO

Casi al mismo tiempo que nuestro profesor nos ilustraba en geometría plana, o como también se le llama "geometría euclidea", y nos indicaba la fórmula para hallar la longitud de la circunferencia, tuvimos que memorizar además la fórmula para averiguar la superficie del círculo, la cual simbolizamos con la letra "S" mayúscula. Dicha fórmula se expresa así:

Fórmula superficie del círculo

Además de las anteriores, surgen también otras preguntas. Por ejemplo... ¿existe alguna relación entre la fórmula de la circunferencia y la del area del círculo?... ¿por qué aparece el número PI en la fórmula de la superficie circular?... Y en resumidas cuentas... ¿de donde demonios sale la fórmula del area del círculo y como llegamos a ella?.

Para responder a estas preguntas recurriremos al método de las "aproximaciones geométricas". Cojamos un círculo y dividamoslo en partes iguales, como si se tratara de un pastel. Empezaremos por trocearlo en dieciseis partes, todas ellas exactamente iguales. Mira el dibujo.

Circulo con divisiones

Ahora vamos a quedarnos con solo una de estas partes para desarrollar nuestra disertación. Da igual la que escojamos ya que todas son exactamente iguales. Nosotros vamos a elegir una al azar, por ejemplo la siguiente.

Circulo con divisiones

Ahora vamos a girar el trozo de círculo que hemos escogido, colocándolo con su lado más pequeño hacia abajo. Mira la siguiente figura.

Trozo del círculo

Fijate que lo que hemos obtenido hasta ahora es "casi" un triángulo isósceles, pero solo "casi", ya que su "base" no es exactamente una linea recta, sino que es una dieciseisava parte del perímetro del círculo, o lo que es lo mismo, una dieciseisava parte de la circunferencia con curvatura incluida. Graba esto último en tu mente ya que será muy importante para entender lo que diremos en breve. Podemos apreciar la curvatura de la "base" de nuestro "defectuoso" triángulo en la siguiente imagen.

Curvatura de la base

Si la "base" del triángulo isósceles obtenido fuese completamente recta podríamos hallar su superficie mediante la conocida fórmula "base x altura / 2" y el resultado lo multiplicaríamos por 16, que son los triángulos en que hemos dividimos la figura.

Base y altura del triángulo

De esta manera obtendríamos la superficie total del círculo.

Fórmula area círculo

Pero por desgracia, si los hicieramos así los cálculos no serían exactos. Para que lo fueran tendríamos que "enderezar" las bases de todos nuestros triángulos isósceles y entonces sí que tendríamos éxíto usando la mencionada fórmula. ¿Como conseguirlo?.

¡Bueno!... más que "enderezar" las bases de los triángulos... ¿Que tal si los hacemos más pequeños?. ¿Conseguiríamos mejorar esta situación si en lugar de dividir el círculo en 16 lo dividimos en 100 triángulos?. ¿Como quedarían entonces?. Mira la siguiente figura.

Triangulo (100 partes)

Como explicamos en la propia imagen anterior, no hemos pretendido ser precisos al efectuar el fraccionamiento, con lo cual queremos aclarar que las dimensiones de esta última figura no se corresponden con la realidad y ni mucho menos son exactas. Sin embargo, esto no tiene la más mínima importancia. En este momento, lo verdaderamente interesante es que entiendas que la base del triángulo ya no es una curva o, al menos, ha perdido gran parte de su curvatura. ¡Esto es lo verdaderamente importante!.

Base con curvatura menor

Pero no solo se ha reducido la curvatura de la base. Al dividir el círculo en 100 triángulos hemos ganado algo más. Ahora, además, la altura del triángulo mide practicamente lo mismo que el radio del círculo y esto es de una importancia vital como veremos a continuación.

Mejora de la altura

En vista del incremento de perfección y exactitud que hemos conseguido al dividir el círculo en 100 triángulos... ¿Por qué no aumentamos las divisiones a un número muchísimo mayor de 100?. Así llegará un momento en que conseguiremos la precisión total de los cálculos.

La verdad es que no podemos aumentar indefinidamente el número de divisiones del círculo. Excepto algunas pocas cosas que no tienen límites (como la insistencia y el incordio de mi querida suegra), esto si que lo tiene.

Si continuamos dividiendo sin parar llegaría un momento en que los triángulos ya no serían triángulos. Sus lados se solaparían unos con otros y entonces lo perderíamos todo. El punto exacto está justo antes de llegar a ese "límite", justo antes de que los triángulos dejen de ser tales de forma que tengamos el máximo número posible de triángulos isosceles "perfectos".

Es entonces cuando nuestros cálculos serán completamente exactos. Las bases de los triángulos serán completamente rectas y sus alturas medirán lo mismo que el radio del círculo. A ese punto es donde hemos de llegar pero... ¿Como sabremos cuando hemos llegado al "límite"?. Pues lamentablemente no lo sabemos... ¡pero lo podemos imaginar!. Sigue leyendo.

EL "LÍMITE"
Efectivamente, para efectuar de manera fidedigna nuestros cálculos podemos imaginar el "límite", el cual, para obtener el resultado final, no tiene necesariamente que ser el límite correcto. Por ejemplo... supongamos que ese límite está en 1000 triángulos. La superficie de nuestro círculo sería igual a 1000 veces la superficie de uno de esos triángulos. La fórmula sería la siguiente:

Fórmula area círculo

Como resulta que en el límite la altura del triángulo mide lo mismo que el radio de nuestro círculo, lo sustituiremos en la fórmula, la cual queda así:

Fórmula area círculo

Ahora vamos a cambiar la posición que ocupan el número "1000" y el radio "r". Esto no cambia para nada el resultado de la fórmula. Simplemente lo que hacemos es presentarla de manera diferente para que el proceso pueda entenderse más facilmente.

Fórmula area círculo

¿Recuerdas que te dijimos en el subtema anterior que te grabaras algo en la mente?. Te refrescaremos la memoria. Cuando dividimos el círculo en dieciseis triángulos te comentamos que su base era una dieciseisava parte del perímetro del círculo, o sea, una dieciseisava parte de su circunferencia. Eso quiere decir que si hubiéramos multiplicado la longitud de la base de aquel triángulo por 16 hubiéramos obtenido la longitud de su circunferencia.

Volviendo ahora a nuestro círculo actual dividido en 1000 triángulos, si multiplicamos la base de uno de ellos por 1000 también obtendremos la longitud de su circunferencia ¿verdad?. Pues eso es justamente lo que expresa el numerador de la fracción de la fórmula anterior. ¡Mírala bien!.

En el numerador se multiplica la base de uno de los triángulos por 1000. Es exactamente eso... la longitud del perímetro del círculo, o sea, la longitud de su circunferencia. Por lo tanto, sustituyamos dicho numerador por la ya conocida fórmula de la longitud de la circunferencia.

Fórmula area círculo

El número 2 está presente tanto en el numerador como en el denominador de la fracción, por lo que podemos eliminarlos sin ningún problema. La fórmula entonces queda de la siguiente manera:

Fórmula area círculo

Y por último, el radio está multiplicándose a si mismo, por lo que podemos elevarlo al cuadrado y expresar la fórmula del area del círculo tal y como la conocemos habitualmente.

Fórmula FINAL del area del círculo

Aunque el proceso ha sido un poco complejo estamos seguros que ha merecido la pena. Y si todavía te queda alguna duda puedes echarle un ojo al siguiente video, el cual te ayudará a entender lo que el artículo quizás no ha conseguido.

Regístrate... ES GRATISSi no eres usuario "Premium" puedes visualizarlo en nuestro canal de Youtube. También puedes suscribirte al canal y de esta manera no te perderás ninguna de nuestras publicaciones.

Os invitamos a todos a dejar vuestros comentarios al respecto. ¡Hasta pronto amigos!. Nos vemos de nuevo aquí, en Radioelectronica.es, tu punto de encuentro.

 
C O M E N T A R I O S   
matematica

#3 Muy practico y muy facil de entender » 19-12-2018 15:45

Felicitaciones muy buen artículo

MUY BUENA

#2 JENIFER MARIA » 31-03-2018 01:42

:D :D :D :D :D :D :D :D :D MUY BUENA

RE: Relación entre la circunferencia y el círculo

#1 Edgar » 20-08-2017 23:27

Excelente artículo, gracias un abrazo.

NO ESTÁS AUTORIZADO PARA COMENTAR
Por favor, regístrate e identifícate en el sistema. Gracias.