Acceso



Registro de usuarios
Contáctenos
Teoría
El transformador

Corría el año 1851 cuando el físico alemán Heinrich Daniel Ruhmkorff ideó la bobina que lleva su nombre. Se trataba de un generador que permitía producir tensiones elevadísimas, del orden de decenas de miles de voltios, a partir de la corriente continua de una batería. Con ello se logró conseguir la fuente de tensión necesaria para crear diferentes dispositivos que posteriormente traerían grandes beneficios para la humanidad.

La bobina de Ruhmkorff fué utilizada, por ejemplo, por Heinrich Rudolf Hertz para la realización de sus experimentos con ondas electromagnéticas, lo que significaría los inicios de la radio. También comenzó a utilizarse en los equipos de rayos X como generador electrovoltáico de alta tensión y en los equipos telegráficos de la época. Además, la invención de Ruhmkorff se utilizó en investigaciones relacionadas con diferentes ramas de la física y de la química.

En realidad, Heinrich Daniel Ruhmkorff lo que diseñó fué el primer transformador eléctrico, ya que de lo que se trataba era de un bobinado primario con unas pocas espiras de hilo relativamente grueso por el que se hacía circular una corriente continua pulsante y de un devanado secundario con muchísimas espiras más que el primario y realizado con hilo mas fino. Por lo tanto, Ruhmkorff tuvo el privilegio de fabricar el primer transformador elevador de la historia de la humanidad. ¿Quieres seguir aprendiendo cosas relacionadas con los transformadores? Sigue leyendo, por favor.

Leer más...
Otros Temas Interesantes
Noticias
Curso técnico de utilización del polímetro digital

Curso técnico de utilización del polímetro digital. Excelente y completo tutorial de uso del polímetro digital, con 210 páginas de información práctica sobre el uso de este instrumento.

Aprenderás a manejar tu polímetro digital como un verdadero profesional desde lo más básico. Contiene instrucciones para saber comprobar dispositivos y circuitos electrónicos, así como los conocimientos necesarios para la resolución de averias en equipos eléctricos.

Para más información clica en "Leer completo..."

Leer más...
Radioaficionados
Oscilador de laboratorio hasta 200 MHz

Para un radioaficionado es importantísimo saber usar y manipular los circuitos resonantes. Conocer a que frecuencia oscila uno de estos circuitos es, la mayoría de las veces, uno de los problemas mas habituales con los que tiene que enfrentarse el experimentador.

No obstante, en muchas ocasiones no se dispone del instrumental adecuado para realizar una medida de este tipo. Aunque es posible que dispongamos de un frecuencímetro, en la mayoría de las ocasiones no es suficiente, ya que es probable que no tengamos los medios para hacer oscilar al circuito tanque en cuestión.

Por esta razón, traemos a nuestro blog un pequeño dispositivo con el que podremos realizar esta medida con total seguridad y fiabilidad, además de ser útil para otros menesteres. Básicamente se trata de un oscilador al que únicamente le falta el circuito resonante objeto de nuestra medición. Dicho oscilador se acompaña de la circuitería necesaria para poder usarlo con nuestro frecuencímetro sin que el acoplamiento de este último afecte lo más mínimo a su frecuencia de resonancia. Y lo mejor de todo es que este circuito puede hacer oscilar "casi cualquier cosa que tenga espiras".

El montaje se lleva a cabo con solo seis transistores, uno de ellos el conocido JFET de canal "N" tipo BF-245, de muy fácil localización en el mercado, e incorpora técnicas para estabilizar la amplitud de la señal producida dentro de unos márgenes razonables, pudiendo llegar a oscilar hasta casi los 200 MHz.

Leer más...
Miscelanea
Tira a matar - Juego de reflejos

¿Con que rapidez responde tu cuerpo a los impulsos externos?. ¿Cuanto tiempo necesitarías para reaccionar ante un peligro inminente?. Si oyes un disparo cercano ¿tus reflejos te hacen "salirte del pellejo"?.

Para poner a prueba la rapidez de respuesta a tus estímulos nerviosos hemos ideado un pequeño circuito con el que podrás medirte en este aspecto con otra persona, y de paso cultivar la faceta "reflexológica" del ser humano. Se trata de algo así como un duelo, lógicamente sin pistolas y sin balas pero eso si, al ser del todo electrónico, con botones y con luces.

Una vez construido el dispositivo se dispondrán dos botones de mayor o menor tamaño, los cuales accionarán sendos pulsadores conectados a nuestro circuito. Al oir una señal, los dos participantes se apresurarán a pulsar su correspondiente botón.

El más rápido de los dos se llevará el gato al agua y ganará el juego. Su victoria quedará fehacientemente constatada porque la luz que le corresponde indicará ese hecho.

Comenzamos con esta reseña una nueva categoría de artículos a la que llamaremos "Miscelánea", en la que tendrán cabida una amplia variedad de temas con multitud de contenidos. Esperamos que esta novedad sea de tu agrado.

Leer más...
Práctica
Monitor para fusible

Con relativa frecuencia nos ocurre que, cuando de golpe nuestro equipo electrónico deja de funcionar, en principio nos asaltan las dudas y la desorientación por desconocer el motivo del contratiempo.

No obstante, en multitud de ocasiones pasa que el inconveniente lo produce un fusible que, bien por envejecimiento o por cualquier otra causa puntual, ha fundido y ha dejado sin alimentación al circuito.

Para que salgamos de dudas de forma inmediata, sin necesidad de desmontar ni un solo tornillo del aparato en cuestión, podemos instalarle este sencillo monitor que nos confirmará mediante un simple diodo LED si efectivamente se trata del fusible de protección que ha saltado.

¿Crees que resultará muy complicado llevar a cabo este montaje?... Para darte una pista te diremos que, en su versión de baja tensión, solo está compuesto del mencionado diodo LED y su correspondiente resistencia limitadora.

¿Verdaderamente crees que será dificil llevar a la práctica este dispositivo?. Sigue leyendo y verás que apenas tiene dificultad.

Leer más...
Teoría
Energía eléctrica

Después de estudiar los conceptos físicos necesarios podemos abordar ahora el estudio de la disciplina que verdaderamente nos interesa, y así poder acceder al estudio de los fenómenos radioeléctricos. Aceptamos como principio básico que la electricidad es una forma de energía ya que gracias a ella aparecen fuerzas capaces de realizar un trabajo. Estudiemos esto más a fondo y veámoslo experimentalmente.

Recordemos que la energía ni se crea ni se destruye sino que se transforma. En virtud de este enunciado vamos a transformar energía mecánica (por ejemplo) en electricidad (energía eléctrica) y vamos a demostrar, de forma tangible, como esta última es capaz de realizar un trabajo por lo que podremos afirmar que estamos en presencia de una forma de energía, en este caso energía eléctrica. Vamos a comprobarlo de la misma manera como lo comprobó el sabio griego Tales de Mileto hace ahora unos 2600 años. ¿Te interesa?... pués adelante.

Leer más...
Noticias
RECEPTOR DE HF SIN BOBINAS

RECEPTOR DE ONDA CORTA FACIL DE CONSTRUIR

En ocasiones, las bobinas han sido para el aficionado a la radio un verdadero calvario. Unas veces porque no se especifica su valor, otras veces porque no se explica con detalle como construirlas y otras veces porque no se dispone del soporte adecuado para llevarlas a cabo.

Te podemos asegurar que con el receptor que te proponemos hoy no te pasará esto ya que no contiene en su circuitería ni una sola bobina.

Además, te resultará tan sencillo construirlo que seguro que disfrutarás desde el primer momento.

No te pierdas esta información y clica ya en LEER COMPLETO...

Leer más...

La circunferencia, el círculo y el número PI (π)

CircunferenciaLa mayor parte de las personas que vivimos en paises desarrollados, quizás porque estamos acostumbrados a obtenerlo todo con suma facilidad y/o que las cosas vengan a nosotros como caídas del cielo, a menudo las damos por sentadas de manera automática.

Practicamente en ningún momento nos preguntamos porqué algo es o se produce de una determinada manera. Nos basta con saber que tal o cual cosa es como es y punto, lo aceptamos sin reservas.

Algo así nos ha ocurrido a muchos cuando asistíamos a la escuela, en épocas pasadas. ¿Recuerdas cuando aprendiste la fórmula para hallar la longitud de la circunferencia?. ¿O cuando te enseñaron la fórmula para calcular la superficie del círculo?. Todos las aceptamos sin pestañear, y pocos fuimos los que nos preguntamos de donde habia salido el famoso número PI (π). Muchos daban por sentado que aquello era así porque lo decía nuestro profesor de matemáticas y se acabó.

Pero en realidad, esas conocidas fórmulas han salido de algún sitio o, mejor dicho, han sido promulgadas por una o varias personas después de haber dedicado mucho tiempo y esfuerzo al estudio de estas figuras geométricas.

¿Te gustaría saber más sobre este tema y conocer como se han llegado a obtener las mencionadas fórmulas y como están relacionadas entre ellas?... ¡Pues clica en "Leer completo..." ya!.

La historia de la circunferencia y el número PI se remonta aproximadamente al año 2000 a.C., cuando los estudiosos del imperio Babilónico observaron que el perímetro de un círculo era aproximadamente 3 veces superior a su diámetro. Sin embargo, no fueron ellos quienes iniciaron la teoría matemática del número que se establece y evalúa mediante la mencionada relación.

Ese privilegio hemos de adjudicárselo al físico y matemático griego Arquímedes de Siracusa el cual fue capaz, a la sazón, de expresar el número PI con una aproximación más que aceptable y nunca vista hasta ese momento.

Como probablemente sabrás, el número PI (que se representa mediante la letra griega "π") se define como la razón entre la longitud de la circunferencia y su diámetro. Se trata de una simple división, como resultado de la cual siempre se obtiene el mismo número sea cual sea el tamaño que tenga la circunferencia elegida.

Formula de PI

PI es un número irracional, lo que significa que no es posible calcularlo mediante una fracción cuyo numerador y denominador sean números enteros. Tampoco es posible saber su valor exacto ya que, al ser irracional, sus decimales se extienden hacia el infinito sin posibilidad alguna de poder predecir su valor al carecer de un patrón periódico, o sea, un número o grupo de números que se repitan constantemente después de la coma.

Son muchos los genios matemáticos que han intentado calcular el valor de PI con el mayor número de decimales posible, cosa por otra parte tan fatigosa como inútil. Desde Euler hasta los Hermanos Chudnovsky, pasando por el matemático amateur William Shanks el cual dedicó gran parte de su vida a este trabajo logrando 527 decimales exactos. No obstante, para darle al numerito un uso habitual y usando el sentido común bastará con memorizar solo los primeros decimales después de la coma.

Valor de PI

 

Volviendo a la primera de nuestras fórmulas, y sustituyendo la frase "Longitud de la Circunferencia" por la letra "C" mayúscula y la palabra "Diámetro" por la letra "D" también mayúscula, podemos expresarla de la siguiente manera:

Formula de PI

Para despejar "C" tenemos que pasar "D" al miembro de la derecha. Si en el primer miembro "D" está dividiendo al pasar al segundo miembro lo hará multiplicando, por lo que la fórmula queda como sigue:

Formula de la circunferencia

Como el diámetro (D) mide justo el doble que el radio (r), la fórmula anterior queda como indicamos a continuación, forma esta reconocible por todos ya que es la que nos enseñaron en el colegio.

Formula de la circunferencia

Hasta aquí todo ha sido muy sencillo. Hemos visto de donde sale el número PI (π) y, posteriormente, el origen y la formación de la fórmula para calcular la longitud de la circunferencia. Sin embargo sigue habiendo cosas en torno a esta figura geométrica que quizás no sean tan fáciles de ver. Nos referimos al cálculo de la superficie de la parte interior de la circunferencia, o sea, la superficie del círculo.

Todos conocemos la fórmula para hallar una superficie circular pero... ¿conocemos también como se obtiene?... ¿de donde sale?... ¿Como se llega a ella?. Las respuestas en el siguiente subtema.

LA SUPERFICIE DEL CÍRCULO

Casi al mismo tiempo que nuestro profesor nos ilustraba en geometría plana, o como también se le llama "geometría euclidea", y nos indicaba la fórmula para hallar la longitud de la circunferencia, tuvimos que memorizar además la fórmula para averiguar la superficie del círculo, la cual simbolizamos con la letra "S" mayúscula. Dicha fórmula se expresa así:

Fórmula superficie del círculo

Además de las anteriores, surgen también otras preguntas. Por ejemplo... ¿existe alguna relación entre la fórmula de la circunferencia y la del area del círculo?... ¿por qué aparece el número PI en la fórmula de la superficie circular?... Y en resumidas cuentas... ¿de donde demonios sale la fórmula del area del círculo y como llegamos a ella?.

Para responder a estas preguntas recurriremos al método de las "aproximaciones geométricas". Cojamos un círculo y dividamoslo en partes iguales, como si se tratara de un pastel. Empezaremos por trocearlo en dieciseis partes, todas ellas exactamente iguales. Mira el dibujo.

Circulo con divisiones

Ahora vamos a quedarnos con solo una de estas partes para desarrollar nuestra disertación. Da igual la que escojamos ya que todas son exactamente iguales. Nosotros vamos a elegir una al azar, por ejemplo la siguiente.

Circulo con divisiones

Ahora vamos a girar el trozo de círculo que hemos escogido, colocándolo con su lado más pequeño hacia abajo. Mira la siguiente figura.

Trozo del círculo

Fijate que lo que hemos obtenido hasta ahora es "casi" un triángulo isósceles, pero solo "casi", ya que su "base" no es exactamente una linea recta, sino que es una dieciseisava parte del perímetro del círculo, o lo que es lo mismo, una dieciseisava parte de la circunferencia con curvatura incluida. Graba esto último en tu mente ya que será muy importante para entender lo que diremos en breve. Podemos apreciar la curvatura de la "base" de nuestro "defectuoso" triángulo en la siguiente imagen.

Curvatura de la base

Si la "base" del triángulo isósceles obtenido fuese completamente recta podríamos hallar su superficie mediante la conocida fórmula "base x altura / 2" y el resultado lo multiplicaríamos por 16, que son los triángulos en que hemos dividimos la figura.

Base y altura del triángulo

De esta manera obtendríamos la superficie total del círculo.

Fórmula area círculo

Pero por desgracia, si los hicieramos así los cálculos no serían exactos. Para que lo fueran tendríamos que "enderezar" las bases de todos nuestros triángulos isósceles y entonces sí que tendríamos éxíto usando la mencionada fórmula. ¿Como conseguirlo?.

¡Bueno!... más que "enderezar" las bases de los triángulos... ¿Que tal si los hacemos más pequeños?. ¿Conseguiríamos mejorar esta situación si en lugar de dividir el círculo en 16 lo dividimos en 100 triángulos?. ¿Como quedarían entonces?. Mira la siguiente figura.

Triangulo (100 partes)

Como explicamos en la propia imagen anterior, no hemos pretendido ser precisos al efectuar el fraccionamiento, con lo cual queremos aclarar que las dimensiones de esta última figura no se corresponden con la realidad y ni mucho menos son exactas. Sin embargo, esto no tiene la más mínima importancia. En este momento, lo verdaderamente interesante es que entiendas que la base del triángulo ya no es una curva o, al menos, ha perdido gran parte de su curvatura. ¡Esto es lo verdaderamente importante!.

Base con curvatura menor

Pero no solo se ha reducido la curvatura de la base. Al dividir el círculo en 100 triángulos hemos ganado algo más. Ahora, además, la altura del triángulo mide practicamente lo mismo que el radio del círculo y esto es de una importancia vital como veremos a continuación.

Mejora de la altura

En vista del incremento de perfección y exactitud que hemos conseguido al dividir el círculo en 100 triángulos... ¿Por qué no aumentamos las divisiones a un número muchísimo mayor de 100?. Así llegará un momento en que conseguiremos la precisión total de los cálculos.

La verdad es que no podemos aumentar indefinidamente el número de divisiones del círculo. Excepto algunas pocas cosas que no tienen límites (como la insistencia y el incordio de mi querida suegra), esto si que lo tiene.

Si continuamos dividiendo sin parar llegaría un momento en que los triángulos ya no serían triángulos. Sus lados se solaparían unos con otros y entonces lo perderíamos todo. El punto exacto está justo antes de llegar a ese "límite", justo antes de que los triángulos dejen de ser tales de forma que tengamos el máximo número posible de triángulos isosceles "perfectos".

Es entonces cuando nuestros cálculos serán completamente exactos. Las bases de los triángulos serán completamente rectas y sus alturas medirán lo mismo que el radio del círculo. A ese punto es donde hemos de llegar pero... ¿Como sabremos cuando hemos llegado al "límite"?. Pues lamentablemente no lo sabemos... ¡pero lo podemos imaginar!. Sigue leyendo.

EL "LÍMITE"
Efectivamente, para efectuar de manera fidedigna nuestros cálculos podemos imaginar el "límite", el cual, para obtener el resultado final, no tiene necesariamente que ser el límite correcto. Por ejemplo... supongamos que ese límite está en 1000 triángulos. La superficie de nuestro círculo sería igual a 1000 veces la superficie de uno de esos triángulos. La fórmula sería la siguiente:

Fórmula area círculo

Como resulta que en el límite la altura del triángulo mide lo mismo que el radio de nuestro círculo, lo sustituiremos en la fórmula, la cual queda así:

Fórmula area círculo

Ahora vamos a cambiar la posición que ocupan el número "1000" y el radio "r". Esto no cambia para nada el resultado de la fórmula. Simplemente lo que hacemos es presentarla de manera diferente para que el proceso pueda entenderse más facilmente.

Fórmula area círculo

¿Recuerdas que te dijimos en el subtema anterior que te grabaras algo en la mente?. Te refrescaremos la memoria. Cuando dividimos el círculo en dieciseis triángulos te comentamos que su base era una dieciseisava parte del perímetro del círculo, o sea, una dieciseisava parte de su circunferencia. Eso quiere decir que si hubiéramos multiplicado la longitud de la base de aquel triángulo por 16 hubiéramos obtenido la longitud de su circunferencia.

Volviendo ahora a nuestro círculo actual dividido en 1000 triángulos, si multiplicamos la base de uno de ellos por 1000 también obtendremos la longitud de su circunferencia ¿verdad?. Pues eso es justamente lo que expresa el numerador de la fracción de la fórmula anterior. ¡Mírala bien!.

En el numerador se multiplica la base de uno de los triángulos por 1000. Es exactamente eso... la longitud del perímetro del círculo, o sea, la longitud de su circunferencia. Por lo tanto, sustituyamos dicho numerador por la ya conocida fórmula de la longitud de la circunferencia.

Fórmula area círculo

El número 2 está presente tanto en el numerador como en el denominador de la fracción, por lo que podemos eliminarlos sin ningún problema. La fórmula entonces queda de la siguiente manera:

Fórmula area círculo

Y por último, el radio está multiplicándose a si mismo, por lo que podemos elevarlo al cuadrado y expresar la fórmula del area del círculo tal y como la conocemos habitualmente.

Fórmula FINAL del area del círculo

Aunque el proceso ha sido un poco complejo estamos seguros que ha merecido la pena. Y si todavía te queda alguna duda puedes echarle un ojo al siguiente video, el cual te ayudará a entender lo que el artículo quizás no ha conseguido.

Regístrate... ES GRATISSi no eres usuario "Premium" puedes visualizarlo en nuestro canal de Youtube. También puedes suscribirte al canal y de esta manera no te perderás ninguna de nuestras publicaciones.

Os invitamos a todos a dejar vuestros comentarios al respecto. ¡Hasta pronto amigos!. Nos vemos de nuevo aquí, en Radioelectronica.es, tu punto de encuentro.

 
C O M E N T A R I O S   
matematica

#3 Muy practico y muy facil de entender » 19-12-2018 15:45

Felicitaciones muy buen artículo

MUY BUENA

#2 JENIFER MARIA » 31-03-2018 01:42

:D :D :D :D :D :D :D :D :D MUY BUENA

RE: Relación entre la circunferencia y el círculo

#1 Edgar » 20-08-2017 23:27

Excelente artículo, gracias un abrazo.

NO ESTÁS AUTORIZADO PARA COMENTAR
Por favor, regístrate e identifícate en el sistema. Gracias.