Acceso



Registro de usuarios
Contáctenos
Teoría
Teoría electrónica de la materia

¿Que hay de nuevo? ¿Dispuestos a continuar con nuestro estudio?. Hoy hablaremos entre otras cosas de la ley de Coulomb. Charles de Coulomb era un físico e ingeniero francés nacido en el año 1736 en la ciudad de Angulema. Sus mayores aportaciones a la ciencia están relacionadas con la electrostática y el magnetismo, habiendo realizado además muchas investigaciones sobre electricidad. Enunció de manera matemática la ley de atracción/repulsión entre cargas eléctricas, la cual lleva su nombre y ha servido de base para los avances conseguidos en el campo de la física moderna.

Si te parece bien, vamos a desgranar el significado de esta ley, la cual nos va a servir para introducirnos en la llamada "Teoría electrónica de la materia", puerta de entrada directa al estudio de la electricidad, la radio y, valga la redundancia, la electrónica.

A partir de este artículo comenzamos a tocar temas de mucha importancia. Es esencial prestar la máxima atención para que los conocimientos adquiridos se graben en nuestra mente y para lograr entender lo que vamos a explicar en los artículos siguientes. ¿Aceptas el reto?.

Leer más...
Otros Temas Interesantes
Noticias
Curso de ELECTRÓNICA BÁSICA 02

PUBLICADO EL CAPÍTULO 2

Publicado el segundo capítulo de nuestro CURSO DE ELECTRÓNICA BÁSICA. Puedes visualizarlo en este mismo artículo.

Leer más...
Radioaficionados
Regulador PWR para SuperStar 3900

Existen emisoras que marcan la diferencia, que dejan huella, que nunca se olvidan. Una de éstas es la mítica Superstar en sus diferentes versiones. Tomando como base el modelo 3900 vamos ha desarrollar en este artículo la información necesaria para colocarle un regulador de potencia de salida de radiofrecuencia (RF) para AM y FM.

En la web existe mucha información sobre esta emisora, incluso hemos visto algún que otro artículo sobre el tema que nos ocupa. Sin embargo la información que hemos encontrado en la red no está detallada y además no es muy precisa ni todo lo exacta que requiere algo así. Una persona sin mucha experiencia podría encontrarse con un serio disgusto si la llevara a cabo debido a las lagunas que acompañan estas informaciones.

Por esta razón hemos decidido hacer un artículo repleto de ilustraciones y muy detallado, con la idea de que su puesta en práctica les resulte fácil a aquellos que no tienen la experiencia suficiente en trabajos de este tipo y que puedan llevarla a cabo sin ningún tipo de problema. Con solo un soldador, algo de estaño y un par de cablecillos podrás incorporar a tu Superstar 3900 un práctico regulador para controlar en todo momento su potencia de salida en AM o FM, lo cual es muy conveniente (yo diria que absolutamente necesario) en caso de usar un amplificador de salida de RF. Una vez instalado deberás tener en cuenta la legislación vigente en esta materia y no sobrepasar la potencia máxima permitida, que en España es de 4 Watios tanto para AM como para FM.

Leer más...
Miscelanea
Sencillo VU-Meter a diodos LED

Lejos quedan aquellos tiempos en los que todos los medidores, y al decir todos me refiero a TODOS, estaban construidos mediante un galvanómetro y la lectura se realizaba con una aguja que parecía deslizarse al recorrer una escala graduada.

A decir verdad, para aquellos que en cierta manera somos de "la vieja escuela", los referidos medidores, midieran lo que midieran, tenían un encanto muy especial y podría decirse que sentimos "morriña" cuando los recordamos, como diría un gallego al estar lejos de su tierra y escuchar el sonido de una gaita.

Pero llegaron los diodos LED y se hizo la luz. Desde entonces, son muchos y muy variados los VU-Meters, vúmetros o medidores de unidades "VU" (del inglés Volume Unit) que se han desarrollado incorporando este componente electrónico, sobre todo usando la tecnología de la integración.

Pero en este artículo no vamos a publicar la información técnica para construir uno de estos instrumentos con los clásicos circuitos integrados UAA170 o UAA180 ni con cualquier otro. Tampoco vamos a enseñarte a conectar esas "barritas" LED con diferentes diseños. ¡Con ellas practicamente lo tienes todo hecho!.

En este artículo vamos a enseñarte como construir un VU-Meter LED con componentes discretos. ¡Dale ya al "Leer completo..." para saber más!.

Leer más...
Práctica
Detector de polaridad

Uno de los mayores errores que se cometen al enchufar equipos electrónicos a baterías o a fuentes de alimentación de corriente continua es la inversión de polaridad. ¿Te ha ocurrido esto a ti alguna vez al instalar una emisora de radioaficionado en tu automóvil y conectarla a su circuito eléctrico?.

Cuando se da esta circunstancia uno se pregunta... "¿como me ha podido pasar a mi?. No es posible, estoy viviendo un mal sueño, una pesadilla. Yo siempre voy con muchísimo cuidado. Pronto despertaré...". Pero no. Por desgracia no se trata de un sueño sino de una situación real. Has cometido el error más frecuente cuando se manejan equipos electrónicos con alimentación continua exterior; la temida inversión de polaridad.

Para que esto no te vuelva a pasar vamos a enseñarte a construir un sencillo aparato con el que podrás detectar muy facilmente la polaridad de una tensión continua desde 2 hasta 230 voltios aproximadamente. También te indicará, caso de que no se trate de una tensión continua, si dicha tensión es alterna.

Mediante unos diodos LED bicolor este tester te marcará, sin ninguna posibilidad de error, cual es el polo positivo y cual el negativo de una determinada toma de corriente eléctrica o si por contra se trata de una tensión alterna. ¿Te interesa?. Sigue leyendo, por favor...

Leer más...
Teoría
El amperio

En el artículo anterior hemos relacionado la cantidad de cargas eléctricas (electrones) que circulan por un determinado punto de un circuito con el tiempo. Es lo que hemos quedado en llamar "intensidad de corriente eléctrica". De esta manera pordemos decir, por ejemplo, que por un conductor circulan 36 culombios por cada hora transcurrida con lo que estamos expresando el "caudal" de la corriente eléctrica, o dicho técnicamente su intensidad. Sin embargo, en electrónica no se utiliza esta manera de medir la intensidad de corriente ya que tendríamos que manejar dos parámetros, la carga y el tiempo, cosa que es engorrosa,  incómoda y muy poco adecuada.

Lo que se hace en la práctica es utilizar una unidad que englobe y combine a ambos, tanto a la carga como al tiempo, ya que ambos están íntimamente ligados cuando hablamos de una corriente eléctrica al tratarse esta de electrones (cargas) en movimiento (tiempo). La unidad que se utiliza universalmente para medir la intensidad de una corriente eléctrica es el AMPERIO, bautizado así en honor al matemático y físico francés André-Marie Ampère considerado como uno de los descubridores del electromagnetismo. En este artículo vamos a explicar que es exactamente el amperio, que instrumento necesitamos para medirlo y cual es la manera correcta de colocar este instrumento en un circuito. ¿Nos sigues?

Leer más...
Noticias
Hazte "PREMIUM" por un AÑO por solo 10 €

¿Conoces nuestro canal de Youtube?

Nuestro canal en Youtube, al que puedes acceder mediante el link https://www.youtube.com/@Radioelectronica-Spain, a fecha de hoy ya ha superado los 45.000 seguidores en todo el mundo. No son muchos, es verdad, y tampoco pretendemos presumir de ello. Sin embargo, si que son muchos los comentarios y correos electrónicos que recibimos con preguntas y dudas que surgen a raíz de ver los videos publicados.

Nuestro "Curso de electrónica básica" ha tenido una muy buena aceptación entre los usuarios. Hasta el momento estamos ofreciendo siete capítulos, y aunque en los mismos se toca lo más elemental de la electrónica y sin habernos metido aún en mucha hondura, todos los días recibimos correos electrónicos pidiéndonos que le despejemos una duda o que le aclaremos un punto determinado relativo al tema tratado.

Te comunicamos que tenemos muy buenas noticias para todas las personas interesadas.

Clica en LEER COMPLETO para saber todo lo que te podemos ofrecer sobre este asunto.

Leer más...

Monitor para fusible mejorado

Fusible de cristalEn un artículo anterior de nuestro blog ya abordamos un montaje titulado "Indicador de fusible fundido" mediante el cual tuvimos la oportunidad de estudiar el multivibrador astable.

Posteriormente publicamos otro artículo titulado "Monitor para fusible", en el que presentábamos un circuito mucho más simple que el primero, que iluminaba un led cuando el fusible fundía.

Sin ánimo de ser insistente, os queremos presentar ahora este otro monitor algo más sofisticado que el segundo y menos complicado que el primero, mediante el cual podemos saber de un vistazo si nuestro aparato electrónico está recibiendo la alimentación adecuada, o por contra, está interrumpida por culpa de un fusible defectuoso.

En esta ocasión usaremos un doble diodo LED con cátodos comunes. El encendido del LED de color verde (¡PERFECTO!) nos indicará el funcionamiento correcto del dispositivo, mientras que si el LED que luce es el de color rojo (¡ALARMA!) querrá decir que el fusible está interrumpido.

Debido a la extremada sencillez del circuito creemos que merece la pena integrarlo en alguno de nuestros montajes, según consideremos o no la necesidad o conveniencia de que incorpore la mencionada indicación.

Clica en "Leer completo..." para ver más detalles.

En principio hablaremos de un circuito diseñado para tensiones de red alternas de 230VAC, aunque también funcionaría sin problemas en redes antiguas de 127VAC simplemente bajando el valor de la única resistencia que incluye y, con ligeras modificaciones, en circuitos de corriente continua.

En realidad, este pequeño montaje que presentamos hoy tiene dos funciones bien diferenciadas, tal y como hemos adelantado en la introducción.

La primera y no menos importante es la de indicarnos que la alimentación está llegando perfectamente al circuito que tengamos entre manos. Esto se señaliza mediante el encendido del LED de color verde.

Cuando por alguna circunstancia el fusible funde, entonces el LED verde se apagará y se encenderá el LED de color rojo, indicándonos una anomalía en el mencionado componente.

El esquema eléctrico lo puedes ver a continuación.

Esquema eléctrico del monitor para fusible

El funcionamiento del circuito es muy simple. Si te fijas, cuando el fusible está correcto los diodos LED están en paralelo, solo que el de color rojo tiene en serie con él un diodo zener además de un diodo rectificador 1N4007. Este último diodo rectificador protege al LED para que no se dañe durante los semiciclos negativos y en serie con el LED verde se ha tomado esta misma precaución. Está claro que el circuito funciona solo con los semiciclos positivos de la tensión de la red.

Al estar ambos LED en paralelo, y con las condiciones mencionadas, el de color verde conduce antes que lo haga el rojo y se ilumina. En el verde caen aproximadamente unos 1,50V, tensión a la que hay que sumar los 0,70V del rectificador 1N4007, o sea un total de 2,20 voltios. Sin embargo, el de color rojo al tener en serie un zener de 5,10 voltios no conducirá, ya que la tensión de 2,20V que tiene en paralelo no es ni tan siquiera suficiente para hacer conducir al zener.

Pero si por cualquier circunstancia el fusible funde, entonces el circuito del LED verde se desconectará de la alimentación y dejará de estar en paralelo con el circuito del LED rojo. Ahora este último LED si que se ilumina ya que "se habrá quitado de encima" al LED verde que estaba recortando su tensión a solo 2,20V.

La resistencia R1 de 100K limita la corriente a través de los LED a algo mas de 2mA lo que permitirá una iluminación razonable de los mismos. Si se desea un nivel de iluminación mayor puede bajarse su valor, eso si, calculando previamente su potencia de disipación. Por ejemplo, para iluminar los LED plenamente el valor de esta resistencia habría de ser aproximadamente de unos 12K pero como contrapartida tendríamos que aumentar su potencia máxima a 5W, lo cual deja de ser práctico.

Otra cosa a tener en cuenta es que todo este circuito está expuesto a la tensión de la red de 230VAC, así que andad con mucho cuidado para evitar disgustos.

Si se va a utilizar el circuito en redes eléctricas antiguas de 127VAC bastará con fijar el valor de la resistencia R1 en 47K usando una potencia máxima de disipación de solo 0,5W.

Si se desea usar este montaje para monitorizar fusibles en circuitos de corriente continua, por ejemplo con tensiones de 13,8V, los diodos rectificadores 1N4007 sobran y habrá que bajar los valores de la resistencia R1 y la tensión del zener. En este caso el circuito podría quedar así.

Esquema monitor de fusible para baja tensión

Y si quieres ver funcionando el circuito solo tienes que visualizar el siguiente video.

Regístrate... ES GRATISSi no eres usuario "Premium" puedes visualizarlo en nuestro canal de Youtube. También puedes suscribirte al canal y de esta manera no te perderás ninguna de nuestras publicaciones.

Esperamos que os haya gustado este artículo.

Animaos a comentar vuestros pareceres y dudas. Un saludo a todos.

 

NO ESTÁS AUTORIZADO PARA COMENTAR
Por favor, regístrate e identifícate en el sistema. Gracias.