Acceso



Registro de usuarios
Contáctenos
Teoría
La resistencia eléctrica

Seguramente te habrás dado cuenta de que cada vez que hemos hablado de circulación de la corriente electrica hemos dicho que lo hace a través de un conductor o un hilo conductor. A nadie se le ocurriría hacer un circuito con hilo de nylon porque jamás conseguiría que la corriente eléctrica circulara a través de él. Al hablar de hilos conductores nos referimos a hilos o cables metálicos ya que son este tipo de materiales los que mejor conducen la corriente eléctrica. De hecho existen materiales que permiten el paso de la corriente a su través sin apenas ninguna dificultad. Estos materiales son los llamados CONDUCTORES y la plata se lleva la palma de todos ellos siendo el metal mejor conductor que existe.

Sin embargo, el metal conductor más utilizado en instalaciones eléctricas no es la plata, como cabe suponer debido a su alto precio, sino el cobre. Sin ser tan buen conductor como la plata, su precio mas bajo y su gran ductilidad (propiedad de poder deformarse de forma continuada sin romperse) que permite obtener hilos muy finos, hacen del cobre el conductor eléctrico por excelencia en la mayoria de las industrias. En este artículo vamos a hablar de los buenos y los malos conductores de la electricidad, pasando por los que están en la zona intermedia. ¿Nos sigues?.

Leer más...
Otros Temas Interesantes
Noticias
Yaesu - Manuales

Se han agregado en la sección de descargas para el radioaficionado bastantes manuales técnicos de equipos de la firma Yaesu. También se han agregado dos manuales de usuario en idioma español. Queremos hacer hincapié en que no se trata de PDFs escaneados, sino originales con una excelente calidad, por lo que estamos seguros que los aficionados a la radio van a disfrutar con ellos.

Cada vez disponemos de mas información técnica sobre equipos de radioaficionados. Nuestra base de datos, poco a poco, va subiendo en cantidad. Además iremos publicando montajes prácticos sencillos, pero muy eficaces de cara a su utilización en la estación de radio. Esperamos que el esfuerzo realizado sirva para ayudar a aquellos que como nosotros, se deleitan con el estudio y la práctica de la electrónica.

Leer más...
Radioaficionados
Regulador PWR para SuperStar 3900

Existen emisoras que marcan la diferencia, que dejan huella, que nunca se olvidan. Una de éstas es la mítica Superstar en sus diferentes versiones. Tomando como base el modelo 3900 vamos ha desarrollar en este artículo la información necesaria para colocarle un regulador de potencia de salida de radiofrecuencia (RF) para AM y FM.

En la web existe mucha información sobre esta emisora, incluso hemos visto algún que otro artículo sobre el tema que nos ocupa. Sin embargo la información que hemos encontrado en la red no está detallada y además no es muy precisa ni todo lo exacta que requiere algo así. Una persona sin mucha experiencia podría encontrarse con un serio disgusto si la llevara a cabo debido a las lagunas que acompañan estas informaciones.

Por esta razón hemos decidido hacer un artículo repleto de ilustraciones y muy detallado, con la idea de que su puesta en práctica les resulte fácil a aquellos que no tienen la experiencia suficiente en trabajos de este tipo y que puedan llevarla a cabo sin ningún tipo de problema. Con solo un soldador, algo de estaño y un par de cablecillos podrás incorporar a tu Superstar 3900 un práctico regulador para controlar en todo momento su potencia de salida en AM o FM, lo cual es muy conveniente (yo diria que absolutamente necesario) en caso de usar un amplificador de salida de RF. Una vez instalado deberás tener en cuenta la legislación vigente en esta materia y no sobrepasar la potencia máxima permitida, que en España es de 4 Watios tanto para AM como para FM.

Leer más...
Miscelanea
Luz trasera para bicicleta (piloto) sin pilas

¿Eres de los que les gusta pedalear?. Si es así, es muy probable que cuando te subes a la bicicleta quieras que tu seguridad no corra peligro.

Algo que te puede ayudar mucho en este sentido, y que no debería faltar nunca en el equipo de un ciclista, es una luz trasera o piloto que sea visible a muchos metros de distancia.

Dicho dispositivo no debería depender del nivel de carga de unas pilas o unas baterías sino que ha de ser un sistema autónomo e independiente, que se ponga en marcha y se ilumine de manera automática en cuanto se inicie la marcha, indicando a los demás nuestra presencia en la carretera.

Pero además, este piloto debería seguir iluminado aunque detuviéramos nuestra bicicleta y mantener la luz indicadora de nuestra posición sin necesidad de continuar pedaleando. Insistimos, todo ello sin usar pilas ni baterías.

Te presentamos en este artículo un sistema de iluminación trasera para bicicletas sin mantenimiento de ningún tipo, del cual no tendrás que preocuparte nunca más ya que estará siempre listo en el momento en que subas a tu vehículo y continuará dando servicio cuando te pares. ¿Te interesa?.

Leer más...
Práctica
El teléfono yogur y su versión electrónica

Es muy probable que cuando éramos niños hayamos jugado alguna que otra vez con el llamado "teléfono yogur", probablemente fabricado por nosotros mismos ya que su construcción no ofrece prácticamente ninguna dificultad.

Con solo un par de recipientes de plástico vacíos, que casi siempre se conseguían una vez que habíamos consumido los yogures (de ahí el nombre por el que se le conoce normalmente), unos metros de hilo suficientemente resistente y poco más, teníamos un juguete con el que pasábamos horas y horas de ocio y diversión.

Mientras uno de nosotros aproximaba el bote de yogur a su oreja el otro lo hacía con el que le correspondía a su boca y comenzaba la "transmisión" del mensaje. Y aunque la distancia entre los dos interlocutores no podía exceder de algunos metros, la transmisión de la "fonía" que se conseguía con este artilugio, aunque débil, era relativamente buena.

La verdad es que aquellos eran otros tiempos. Nos divertíamos con cualquier cosa. Y aunque hoy este juguete quizás le siga llamando la atención a los más pequeños, no hay que olvidar que vivimos en la era de la electrónica y casi todos esperamos algo más. De ese "algo más" hablamos en este artículo. Vamos a presentarte la versión electrónica del teléfono yogur. ¿Quieres ver de que se trata?. ¡Adelante!.

Leer más...
Teoría
El receptor elemental (VI)

Una vez que hemos visto qué es un condensador y cual es su funcionamiento tanto en circuitos de corriente continua como en circuitos de corriente alterna, pasamos a ver que papel juega este componente electrónico en el selector de frecuencias de nuestro receptor elemental.

Ya hemos mencionado que el selector de frecuencias de nuestro sencillo receptor lo forman dos componentes: una bobina y un condensador. A estas alturas conocemos ambos elementos y, básicamente y de forma aislada, sabemos como funcionan. Ahora nos toca profundizar un poco en el comportamiento de los mismos cuando se montan juntos, formando ambos el corazón del selector de frecuencias de nuestro receptor.

Es verdad que hemos comentado que lo que ocurre en este tipo de circuitos es algo un tanto complejo, pero esto no va a impedir que, mediante varios ejemplos y con algunas ilustraciones, conozcamos los efectos que se producen cuando bobina y condensador hacen su trabajo particular de seleccionar señales de R.F. en el receptor que estamos estudiando. ¿Te apetece seguir?.

Leer más...
Noticias
Revista 27 MHz - Fascículo 1

Fascículo Nº 1 de la mítica revista "27 MHz" dedicada a la CB (Banda Ciudadana).

Un extracto de la información que puede encontrarse en ella es el siguiente: Código Q, alfabeto fonético, construcción de una antena dipolo, claves usadas en CB, construcción de bobinas impresas, supresión de ruidos en los vehículos, teoría de antenas (I), supresión de interferencias en TV, compresor de modulación, medidor de campo para emisoras, fuente de alimentación estabilizada, micro-emisor de OM y nociones de electrónica.

Leer más...

El puente de Wien (I)

El puente de Wien es un circuito electrónico compuesto por una combinación de resistencias y condensadores en serie-paralelo. Se utiliza generalmente en instrumentos de medida y generadores de señales de baja frecuencia para laboratorios y servicios de electrónica.

Cuando se implementa como oscilador, el puente de Wien puede generar frecuencias de entre 1 Hz a 1 MHz aproximadamente y entregar una forma de onda perfectamente senoidal.

Fue usado por uno de los fundadores de la firma Hewlett-Packard (William Hewlett) en la tesis final que elaboró para conseguir el máster en la Universidad de Stanford. Posteriormente, William Hewlett junto con David Packard fundaron la empresa "Hewlett-Packard" y el primer producto que comercializaron fue el generador de señales de B.F. de precisión modelo HP-200A, basado en el circuito al que nos referimos en este artículo, el cual se hizo muy popular por su baja distorsión.

¿Por qué queremos hablar del puente de Wien?. Por una sencilla razón. En nuestro próximo artículo de la sección de "Radioaficionados" publicaremos un montaje basado en este circuito, aunque no precisamente trabajando como oscilador.

Por el momento, vamos a ver de forma básica, con la menor cantidad de matemáticas posibles, y con palabras comprensibles por todos, como funciona y que se puede hacer con este artilugio electrónico estudiando su diseño y configuración.

Concretamente, el llamado puente de Wien está formado por cuatro resistencias y dos condensadores y dispone, como todos los puentes de estructura similar, de una entrada y una salida. Su esquema eléctrico es el siguiente.

El puente de Wien se usa siempre en circuitos de corrientes o señales alternas. Por este motivo y en un principio, su grado de complejidad es más alto que otros puentes que hacen su trabajo con corriente continua, siendo estos últimos de funcionamiento más asequible y más fáciles de comprender.

Por este motivo, antes de continuar, será mejor que hablemos sobre otro tipo de puente de mecánica mas sencilla de asimilar para posteriormente, una vez que tengamos claro el asunto, adentrarnos en el funcionamiento del primero. Nos referimos al puente de Wheatstone.

EL PUENTE DE WHEATSTONE
Como hemos dicho en el párrafo anterior, el puente de Wheatstone quizás sea uno de los más sencillos y de funcionamiento más facilmente comprensible. Está compuesto simplemente por cuatro resistencias. Mira la ilustración.

Básicamente este puente se utiliza para la medida de resistencias cuando se requiere una alta precisión. A su salida se incorpora un galvanómetro de cero central y su entrada se alimenta con una tensión continua. Como veremos, esta tensión continua puede estar compuesta perfectamente por pilas comunes, ya que no se necesita una gran estabilidad en la alimentación. La cosa quedaría de la siguiente manera.

Este sería el puente de Wheatstone en su versión más elemental. No obstante, para tratar de explicaros su funcionamiento de la manera mas simple posible e intentar hacéroslo mas fácil vamos a "recolocar" sus componentes en el diagrama, eso sí, sin modificar para nada su disposición ni su conexionado.

Se trata solo de darle un cambio de orientación "esquemática" a las cuatro resistencias y posicionarlas de forma totalmente vertical en vez de inclinadas. Será exactamente el mismo circuito, sin embargo, estamos seguros de que representándolo así entenderás mejor lo que vamos a explicar posteriormente.

Observando atentamente el esquema anterior se puede deducir que, si elegimos los valores adecuados para las resistencias, podemos conseguir que la tensión en el punto "A" sea idéntica a la del punto "B". Una vez igualadas estas dos tensiones, la aguja del galvanómetro intercalado entre esos dos puntos no se inmutará y permanecerá inmóvil señalando el cero central ya que a su través no circulará corriente alguna. Se dice entonces que el puente está equilibrado.

Aunque creemos que este artículo podrá ser leido también por personas documentadas en las leyes de Kirchhoff que, obviamente, sabrán resolver matemáticamente el puente de Wheatstone, queremos cumplir lo que prometimos al principio con relación a usar lo menos posible las matemáticas y así hacer entendible el circuito a un mayor número de lectores. Con este propósito pensamos que lo mejor será poner un ejemplo práctico y usar un poco de sentido común. Observa por tanto la siguiente ilustración a la cual nos referiremos a partir de ahora.

Hemos asignado ciertos valores a las resistencias que componen el circuito y, además, hemos indicado las intensidades que las recorren y sus respectivas caidas de tensión. Tenemos que aclarar que en este caso usamos el sentido convencional de la corriente eléctrica y no el real, es decir, que la dirección representada es contraria al desplazamiento de los electrones. No obstante, en ambos supuestos el resultado final será el mismo.

Observa los divisores de tensión formados por R1-R2 y por R3-R4. En el primero de ellos R1 es idéntica a R2 y de un valor de 3 ohmios. En el segundo, R3 también es igual a R4 y de un valor de 6 ohmios. Por lo tanto, no hace falta ser un superdotado para adivinar que las tensiones de los puntos "A" y "B" valdrán justo la mitad de la tensión de la batería, en este caso 6 voltios.

Se deduce de esto que la tensión que podemos medir entre los puntos "A" y "B" es nula puesto que, al estar las caidas de tensión de las resistencias en oposición, estas se cancelan mutuamente.  Expresarlo numericamente es sumamente fácil:  6V - 6V = 0V.

Para los que no lo tienen claro, podemos dibujar el mismo puente de Wheatstone anterior de manera distinta y de este modo tener otro punto de vista. Lo veremos "desde otro ángulo". El circuito es exactamente el mismo con la salvedad de que, para clarificar ideas, usaremos dos baterías idénticas en vez de una sola, lo cual no cambia en absoluto su funcionamiento ni su configuración. El esquema al que nos referimos sería el siguiente.

Fijate que lo único que hemos hecho ha sido añadir otra batería del mismo voltaje (12V) para alimentar la malla de la derecha (R3 y R4) de manera independiente. Sin embargo, ahora podemos apreciar más claramente como ejercen su efecto las caidas de tensión de 6 voltios existentes en las resistencias R2 y R4. Observa como están enfrentados sus polos negativos y positivos, estos últimos a través del instrumento de medida.

Al tratarse de dos tensiones idénticas, la corriente a través del instrumento no puede circular ni en un sentido ni en otro, ya que una tensión se opone y cancela a la otra. Por eso, a través del galvanómetro no circula corriente alguna.

Para ilustrarlo, imagina una situación en la que dos personas con exactamente la misma fuerza se empujan la una a la otra. No se mueven ninguna de las dos de su sitio, ya que sus fuerzas son idénticas y la de una contrarresta y anula la de la otra persona.

Hemos de decir, y esto es importante, que la versión que hemos expuesto con dos baterías ha sido solo con la pretensión de aclarar el funcionamiento del puente. En la práctica siempre se usa una sola batería o una sola fuente de alimentación.

Afirmamos entonces que con las resistencias y la batería indicadas hemos conseguido equilibrar el puente. Pero aquí no acaba la cosa. Podemos continuar afirmando que con esas resistencias y con cualquier batería el puente seguirá estando en equilibrio.

Efectivamente, si cambiamos el valor de la batería y ponemos una de 24 voltios, por ejemplo, nuestro puente de Wheatstone sigue equilibrado. Solo tenemos que echar un vistazo a la siguiente ilustración para comprobarlo.

Vemos como se han duplicado las intensidades de corriente y también las caidas de tensión en las resistencias. No obstante, la tension entre los puntos "A" y "B" sigue siendo nula, ahora ya con 12 voltios en cada resistencia en vez de 6. El puente conserva su equilibrio inicial. Sigue sin circular corriente a través del galvanómetro.

Esto nos indica, como dijimos al principio, que no se necesita una tensión demasiado estable para utilizar el puente ya su estado de equilibrio no depende del voltaje aplicado ni de las variaciones de tensión de la batería utilizada.

Además de lo anterior, esto nos hace vislumbrar que si con cualquier tensión, usando los valores de resistencias indicados, el puente sigue equilibrado, también seguirá equilibrado si se le aplican tensiones alternas a su entrada. Quédate con esta idea, ya que será importante cuando estudiemos más adelante el puente de Wien.

USO DEL PUENTE DE WHEATSTONE
Ya hemos comentado que el uso a que se destina este puente es casi exclusivamente para medidas de resistencias en aquellos casos en los que se requiere una alta precisión. Para ello, hay que hacerle ciertas modificaciones o, mejor dicho, sustituciones. Observa la siguiente imagen.

Como puedes ver, R1 se ha eliminado como resistencia inherente del circuito y R3 se ha sustituido por un potenciómetro llamado RCAL. Este último no es un potenciómetro convencional. Se trata de un potenciómetro calibrado de precisión.

Este componente dispone de una escala en la que podemos leer directamente el valor óhmico que presenta entre dos de sus terminales. Puedes ver un modelo de este componente en la ilustración.

En el sitio que antes ocupaba R1 es donde ahora colocaremos la resistencia incógnita de la que desconocemos su valor y que deseamos medir. La hemos representado como Rx.

El funcionamiento de nuestro medidor de resistencias de precisión basado en el puente de Wheatstone es sumamente sencillo después de haber estudiado su manera de actuar.

Las resistencias R3 y R4 siguen siendo de idéntico valor. Una vez colocada la resistencia incógnita Rx en el lugar mencionado, el que antes ocupaba R1, solo nos queda girar el potenciómetro calibrado hasta conseguir que el galvanómetro marque justo el cero central.

En ese momento, la escala del potenciómetro calibrado nos indicará exactamente cuanto vale la resistencia incógnita Rx, la cual deberá tener un valor idéntico al que tenga en ese instante el potenciómetro, ya que entonces el puente estará equilibrado.

Como ya hemos aclarado, el estado de la pila usada no va a afectar en absoluto al equilibrio del puente, por lo que la exactitud de la medida estará más que asegurada.

La precisión del puente estará determinada únicamente por la exactitud del valor de las resistencias R3 y R4, y por la fidelidad de la escala del potenciómetro calibrado.

CONDICIÓN GENERAL DE EQUILIBRIO
Hemos visto que para equilibrar el puente de Wheatstone se necesitan dos condicionantes; el primero que las resistencias R1 y R2 sean del mismo valor entre sí, y el segundo que las resistencias R3 y R4 también sean de valor idéntico. Sin embargo, no es esta la condición más general de equilibrio del puente.

Por ejemplo, en la ilustración que sigue, cada resistencia tiene un valor diferente de las demás y, no obstante, aseguramos que este puente estará en perfecto equilibrio. ¿Adivinas por qué?.

El punto de equilibrio no se obtiene solo cuando en cada uno de los puntos "A" y "B" está presente la mitad de la tensión de la pila que alimenta el puente. Lo verdaderamente importante es que en ambos puntos exista justo la misma tensión. Podemos comprobarlo en el siguiente esquema al que se le han añadido los datos de tensiones y corrientes.

Existe un punto en común entre los casos anteriores y este mediante el cual podemos extraer una conclusión más acertada sobre cual es la condición general para que el puente esté equilibrado.

En el primer puente que consideramos, el cociente que se obtiene al dividir los respectivos valores de las resistencias de la rama izquierda (R1/R2) es 1, y el cociente de los valores de las resistencias de la rama derecha (R3/R4) también nos da 1. Lo vemos numericamente:

Si hacemos la misma operación con los valores de las resistencias de este último puente tenemos los siguientes resultados:

Como acabamos de comprobar, en ambos puentes se cumple la igualdad de los cocientes de las resistencias de ambas ramas. Es decir que:

Esta si es la condición general necesaria para que el puente de Wheatstone alcance el equilibrio. Podemos escribir el enunciado de la siguiente manera:

"El puente de Wheatstone estará equilibrado cuando el cociente arrojado por los valores de las resistencias de la rama izquierda sea igual al cociente que arrojan los valores de las resistencias de la rama derecha"

Con lo expuesto hasta el momento creemos que ya estaremos preparados para abordar el estudio del puente de Wien, circuito en que se basará el próximo montaje que publicaremos en la sección de "Radioaficionados".

Esperamos vuestras sugerencias, aportaciones, dudas, etc... para lo que teneis a vuestra disposición el sistema de comentarios. Nos vemos pronto amigos.

 
C O M E N T A R I O S   
El puente de Wien (I)

#3 Norman Alfonzo » 13-03-2020 18:50

NO es correcto decir que la tensión entre los puntos A y B sea la "MISMA" lo correcto es decir que deben tener el mismo volteje.

Norman Alfonzo Venezuela

RE: El puente de Wien (I)

#2 gsuarencibia » 19-01-2017 13:31

ok, mas claro....imposible

Excelente

#1 Juan Belmonte » 27-03-2016 17:15

Espero con ansiedad el segundo artículo. Muchas gracias.

NO ESTÁS AUTORIZADO PARA COMENTAR
Por favor, regístrate e identifícate en el sistema. Gracias.