Acceso



Registro de usuarios
Contáctenos
Teoría
El receptor elemental (VIII)

Llegamos a uno de los artículos más interesantes de los dedicados al receptor elemental. Por fin vamos a ver trasladados a la práctica todos los conocimientos adquiridos en los capítulos anteriores.

En este artículo vamos a colocar el circuito resonante paralelo estudiado anteriormente en el sitio que le corresponde dentro del receptor de radio que estamos estudiando.

Entenderemos perfectamente que ocurre para que nuestro receptor elemental "elija" solo una de las señales que capte la antena y rechaze el resto, y por lo tanto le dotemos de la necesaria "selectividad", que es una de las cualidades que distingue a los buenos receptores de los no tan buenos.

Además, veremos también de pasada y por el momento a un nivel muy básico, el concepto de "amplificación" del que hablamos en el artículo sobre "la telegrafía sin hilos y la radio" ¿lo recuerdas?. Se trataba de conseguir aumentar la amplitud de las señales de las emisoras más débiles para que puedan llegar a oirse con claridad, y con mas fuerza, en el auricular de nuestro receptor. ¿Que sistema podríamos utilizar para conseguir esto? ¿Se te ocurre alguno a tí?. Sigue leyendo y te enterarás cual es el que vamos a usar nosotros.

Leer más...
Otros Temas Interesantes
Noticias
Todos los conectores para informática

Base de datos informática con más de 1000 páginas de información sobre conectores, conexiones, adaptadores, circuitos, etc...

Leer más...
Radioaficionados
Regulador PWR para SuperStar 3900

Existen emisoras que marcan la diferencia, que dejan huella, que nunca se olvidan. Una de éstas es la mítica Superstar en sus diferentes versiones. Tomando como base el modelo 3900 vamos ha desarrollar en este artículo la información necesaria para colocarle un regulador de potencia de salida de radiofrecuencia (RF) para AM y FM.

En la web existe mucha información sobre esta emisora, incluso hemos visto algún que otro artículo sobre el tema que nos ocupa. Sin embargo la información que hemos encontrado en la red no está detallada y además no es muy precisa ni todo lo exacta que requiere algo así. Una persona sin mucha experiencia podría encontrarse con un serio disgusto si la llevara a cabo debido a las lagunas que acompañan estas informaciones.

Por esta razón hemos decidido hacer un artículo repleto de ilustraciones y muy detallado, con la idea de que su puesta en práctica les resulte fácil a aquellos que no tienen la experiencia suficiente en trabajos de este tipo y que puedan llevarla a cabo sin ningún tipo de problema. Con solo un soldador, algo de estaño y un par de cablecillos podrás incorporar a tu Superstar 3900 un práctico regulador para controlar en todo momento su potencia de salida en AM o FM, lo cual es muy conveniente (yo diria que absolutamente necesario) en caso de usar un amplificador de salida de RF. Una vez instalado deberás tener en cuenta la legislación vigente en esta materia y no sobrepasar la potencia máxima permitida, que en España es de 4 Watios tanto para AM como para FM.

Leer más...
Miscelanea
Luneta térmica (antivaho) como antena AM-FM

Es probable que alguna vez te haya pasado lo que a mi.

Se activó la alarma del radio-reloj a las 8:00 de la mañana en punto. Todavía casi dormido me incorporé y corrí las cortinas oyendo las noticias en mi emisora favorita. Unos espléndidos rayos de sol penetraron de golpe en mi habitación y acabaron con la oscuridad que hasta entonces había en ella.

Acto seguido procedí al correspondiente aseo matutino para, justo después, sentarme a desayunar. El café estaba exquisito y la tostada, regada con aceite de oliva virgen extra, me supo a gloria bendita.

Aquel dia me levanté contento, muy contento. Tenía muy buenas espectativas. Como soy un enamorado de la radio, me gusta escuchar las tertulias matinales en el coche de camino al trabajo, lo primero que hago al subir al vehículo es conectarla.

He de aclarar que mi coche duerme en plena calle. No soy el afortunado conductor que dispone de garaje. ¡Que raro!... No logro sintonizar ninguna emisora... ¿Que está pasando?.

Paro el coche y me apeo para comprobar la antena... ¡LA ANTENA!... ¡Coñ.!... ¡Que me han robado la antena!.

Esto me estropeó completamente el dia. El cabreo que pillé fue monumental, de campeonato. Entonces tomé una decisión.

Para que esto no me ocurriera más, a partir de entonces decidí usar la luneta térmica, también conocida por el término "antivaho", como antena para mi receptor de radio AM/FM. Si alguien tenía la intención de dejarme sin escuchar la radio tendría que llevarse la luna trasera, y ya eso le iba a resultar más complicado que robar una simple antena... ¿no crees?.

Leer más...
Práctica
La soldadura

"Teoría sin práctica es parálisis y práctica sin teoría es ceguera". Con la primera parte de esta frase, cuya autoría desconocemos, podemos resaltar la importancia de que cualquier cosa que estudiemos siempre vaya acompañada de ejercicios prácticos. De nada en absoluto nos sirve estudiar muy a fondo cualquier rama del saber si luego somos incapaces de poner en práctica lo aprendido. ¿Cuantos inventos han podido no ver la luz si su inventor no hubiera llevado a la práctica la idea, basada en su conocimiento teórico, que tuvo en un momento determinado?.

La segunda parte de la frase es tan cierta como la primera y, por desgracia, se da con bastante más frecuencia que su compañera en la vida real. Cuantas veces hemos contratado a un "profesional" para que nos haga un trabajo y al final, cuando ha terminado, vemos "la chapuza" que nos entrega. ¡Cuanta razón tenía Leonardo Da Vinci cuando expresó lo siguiente!: "Los que se enamoran de la práctica sin la teoría son como pilotos sin timón ni brújula que nunca podrán saber a donde van". Esto nos confirma que "práctica sin teoría es ceguera".

Pues bién, todo ello trasladado a la radio y la electrónica tiene una importancia decisiva. Por lo tanto, vamos a practicar un poco con algo esencial para construir nuestros circuitos de forma apropiada. ¿Que tal si aprendemos a soldar correctamente?. ¿Te gusta la idea?

Leer más...
Teoría
Los semiconductores - El diodo

¿Que ocurre en las entrañas de un diodo semiconductor cuando se le aplica una d.d.p. determinada?.

Sabemos que este componente, el cual está formado por un trozo de cristal semiconductor mitad P y mitad N (o sea una unión PN), en una primera aproximación conduce en un sentido mientras que en el otro se comporta como un aislante.

Si has leido los artículos que dedicamos a las válvulas de vacío reconocerás que el funcionamiento del diodo termoiónico es algo relativamente fácil de asimilar, ya que en él se maneja un solo tipo de portador de carga eléctrica; el electrón.

Sin embargo cuando hablamos de una unión PN, o sea de un diodo semiconductor, contamos con dos portadores de carga distintos, tal y como hemos visto en los artículos precedentes; por un lado el electrón, cuya carga es negativa, y por otro el hueco, al cual se le atribuye carga positiva. La cosa parece que se complica.

No obstante, en este artículo te mostraremos lo fácil que resulta entender el funcionamiento de este dispositivo, pieza básica de gran parte de los equipos electrónicos desarrollados actualmente. El tema tiene una importancia capital para aquellos que deseen profundizar en el estudio de los semiconductores. ¿Te apuntas?.

Leer más...
Noticias
Revista 27 MHz - Fascículo 10

Fascículo Nº 10 de la revista "27 MHz" dedicada a la CB (Banda Ciudadana).

Leer más...

El magnetismo - Imanes

Todos sabemos lo que es un imán (no me refiero a ese señor que dirige la oración en el Islam). Está claro que el ser humano llegó a conocer el magnetismo gracias a los imanes, sin los cuales no sabemos en que estado estarian hoy en dia las cosas. Pero a pesar de que los imanes sean objetos tan conocidos por la mayoría podemos decir que también son grandes desconocidos... ¿que porqué?... pues porque conocemos de sobra los efectos que pueden llegar a producir y sin embargo no sabemos prácticamente nada de la causa por la que ocurren. Es decir, todos sabemos que un imán atrae a otros cuerpos metálicos de hierro y acero pero son pocos los que saben "como rayos lo hace". ¿Cual es la fuente de esa atracción tan llamativa?.

Imagina que eres el padre de Pedrito. Pedrito es un niño muy listo que un buen dia conoce la existencia de los imanes. Como Pedrito tiene muchas inquietudes comienza a investigar y en medio de esas investigaciones te asalta cuando llegas del trabajo y te pregunta... ¡¡Papi, papi...!! ¿Porqué los imanes se pegan al hierro?. Entonces tu vas y le respondes al niño... ¡Porque son magnéticos!. El niño no entiende nada y entonces pregunta otra vez... ¿Y que significa ser magnético?... Te quedas algo confuso con la pregunta pero respondes... ¡¡Pues que tienen magnetita!!. El niño te mira con algo de recelo, y un poco mosca de nuevo te pregunta... ¿Y porqué la magnetita se pega al hierro?. Tu ya casi no sabes que responder y le dices... ¡Por la fuerza magnética que tiene!. El niño, muy serio, se queda ahora mirándote sin parpadear, como si se oliera que no tienes ni idea, y te hace la pregunta definitiva... ¿Y como funciona esa fuerza magnética para hacer que el imán se quede pegado al hierro?... Mejor que leas este artículo antes de seguir contestándole al niño.

La verdad es que resulta muy difícil explicar el magnetismo sin utilizar las matemáticas. Incluso utilizándolas, pasa que la naturaleza misma del fenómeno magnético resulta relativamente ambigüa e indeterminada. Los científicos no se ponen de acuerdo en cuanto a la verdadera naturaleza del magnetismo. No obstante, en este artículo vamos a intentar dar la explicación mas sencilla posible basándonos en la teoría promulgada por el físico alemán Wilhelm Eduard Weber, llamada "teoría de los imanes moleculares". Pero antes debemos hablar un poco sobre la historia y los efectos del magnetismo.

La definición de "magnetismo" podría ser "la propiedad de ciertas sustancias de atraer a los minerales de hierro y sus compuestos". Los primeros imanes que se descubrieron fueron los naturales, es decir, que se pueden encontrar con esa propiedad en la naturaleza. Un imán natural no es más que un trozo de mineral que manifiesta estas propiedades magnéticas y, por lo tanto, es capaz de atraer al hierro y sus compuestos. Los griegos descubrieron los imanes en la ciudad de Magnesia, en Asia Menor, en forma de una piedra capaz de atraer pequeños trozos de hierro. Se trataba de una piedra de magnetita, un mineral de hierro. El nombre de este mineral (magnetita) y del efecto que produce (magnetismo) proceden del nombre de la ciudad en la que fueron descubiertos. La magnetita es el único mineral que de forma natural presenta este poder de atracción sobre el hierro.

Sin embargo, las propiedades magnéticas pueden transmitirse de la magnetita a un trozo de hierro que antes no tenía propiedades magnéticas. Es decir, si ponemos un trozo de hierro que en principio no tiene propiedades magnéticas en contacto con un trozo de magnetita, al cabo de cierto tiempo el hierro habrá adquirido esas mismas propiedades de la magnetita. Si entonces separamos la magnetita del hierro este continuará reteniendo algo del magnetismo natural de la magnetita. A este magnetismo retenido por el hierro se le llama "magnetismo remanente". La magnetita ha influido sobre el hierro transmitiendole sus propiedades magnéticas naturales y ha convertido a este en un imán artificial.

La duración del magnetismo remanente en los imanes artificiales depende mucho del material empleado en los mismos. Es cierto que el hierro adquiere rápidamente propiedades magnéticas, sin embargo también es verdad que las pierde deprisa y corriendo, al poco tiempo de que el magnetismo inductor se separe de él (se les llama por eso IMANES TEMPORALES). Por contra el acero es bastante más dificil de imantar, tanto que se necesita un campo magnético considerable para influir en él de manera sensible. Sin embargo, una vez imantado el acero conserva por mucho mas tiempo el magnetismo remanente. El magnetismo remanente mejora considerablemente si se mezcla el hierro con carbono, wolframio o cobalto. A estos últimos se les conoce como IMANES PERMANENTES en contraste con los anteriores.

Suponiendo un imán en forma de barra, a sus extremos se les llama POLOS e igual que pasa con los polos terrestres reciben los nombres de polo NORTE y polo SUR. En sus polos es donde el imán concentra la mayoría de su fuerza magnética. Esta fuerza va decreciendo conforme nos vamos aproximando al centro y llega a desaparecer completamente en el punto medio de la barra. Este punto medio recibe el nombre de ZONA NEUTRA del imán. Esto es fácil de apreciar si cogemos el imán de barra, lo colocamos en una superficie completamente plana y le espolvoreamos un puñado de limaduras de hierro desde cierta altura. Observaremos que la mayoría de limaduras se adhieren a sus extremos y que paulatinamente van disminuyendo hacia el centro de la barra hasta llegar a desaparecer por completo en su punto medio, donde la fuerza del imán es nula. Esto nos da una idea de la extensión de lo que llamamos CAMPO MAGNÉTICO del imán, que no es ni mas ni menos que su zona de influencia. Este campo magnético está formado por lineas magnéticas; son las llamadas LINEAS DE FUERZA del imán.

Podemos "visualizar" las lineas de fuerza de un imán con ayuda de las limaduras de hierro. Si colocamos un imán bajo un papel o cartulina y espolvoreamos una fina capa de limaduras de hierro observaremos que, bajo la influencia del campo magnético del imán, las limaduras de hierro quedarán "ordenadas automáticamente" pudiendose ver una representación de las lineas de fuerza del imán y la dirección que toman las mismas.  Si hacemos el experimento con un imán de barra, las limaduras quedarán como indica el gráfico que incluimos. Por convenio a las lineas de fuerza de un imán se les ha asignado una dirección, y van por el exterior del imán del polo norte al polo sur y por el interior del polo sur al polo norte.

Bién sabido es que los polos iguales se repelen y los polos distintos se atraen (esto me recuerda que mi mujer y yo nos atraemos mucho, sin embargo entre mi suegra y yo existe "una rara fuerza" que impide que estemos cerca el uno del otro). Es decir, si enfrentamos los dos polos norte de dos imanes diferentes, estos se repelerán el uno al otro. Lo mismo ocurrirá si enfrentamos los dos polos sur. Sin embargo si los polos que enfrentamos son distintos, el norte de uno con el sur del otro, los imanes se atraerán entre si y llegarán a pegarse el uno contra el otro enérgicamente.

Hasta aquí no hemos aclarado mucho el porqué de la fuerza que un imán ejerce sobre el hierro. Como hemos dicho al principio, esto lo vamos a hacer utilizando la teoría de los imanes moleculares, también llamada "teoría de los dipolos magnéticos elementales", que el físico alemán Wilhelm Eduard Weber concibió sobre el año 1852. Se trata de una interesante conjetura que basa su razonamiento en la íntima relación que existe entre el magnetismo y la electricidad. Efectivamente, puede decirse que magnetismo y electricidad son dos aspectos diferentes de un mismo fenómeno físico llamado electromagnetismo.

LA TEORIA DE LOS IMANES MOLECULARES
Para comprender esta teoría primero debes saber una cosa fundamental: "La electricidad produce magnetismo y el magnetismo produce electricidad". Nos quedamos con la primera parte de nuestra afirmación:

LA ELECTRICIDAD PRODUCE MAGNETISMO

Para comprobarlo solo debemos hacer circular una corriente eléctrica por un conductor y aproximarle a este conductor una brújula. Al hacerlo, la aguja de la brújula se desvía. También podemos comprobar esto haciendo pasar perpendicularmente el conductor a través de una hoja de papel o cartón y esparciendo en su cara superior unas pocas limaduras de hierro. Al hacer pasar una corriente eléctrica a través del conductor las limaduras de hierro se agrupan alrededor del conductor formando lineas concéntricas. De manera que alrededor de un conductor por el que circula una corriente eléctrica se produce un campo magnético. ¿Que nos dice esto?.

Nos dice que cuando los electrones se mueven producen un campo magnético. ¿Y no es verdad que los electrones están en continuo movimiento alrededor de su núcleo?. Podría ser que este movimiento al que están expuestos continuamente los electrones fuese una fuente de magnetismo, aunque en principio y visto electrón por electrón este magnetismo sea completamente imperceptible. La teoría de Weber dice que un imán está formado por muchísimos "imanes moleculares" ordenados de forma que todos ellos están apuntando en la misma dirección sumando así sus fuerzas magnéticas respectivas y obteniendose en conjunto un imán mucho más potente. Para entenderlo mejor vamos a ir "marcha atrás".

Supongamos que tenemos una barra de hierro imantada con sus polos norte y sur perfectamente definidos. Si la partimos por la mitad ¿que obtenemos?. Pues obtenemos dos imanes con sus polos situados exactamente con la misma orientación que los tenía el imán original. Si ahora hacemos lo mismo con los dos imanes obtenidos de la división anterior, los cortamos por la mitad, nos encontraremos con cuatro imanes. Los polos de estos cuatro imanes también tendrán exactamente la misma orientación que los dos anteriores. Podemos continuar así y hacer la división cuantas veces queramos que en todas las ocasiones la orientación de los imanes obtenidos al dividir el anterior será idéntica a la del imán original. Pero estas divisiones no pueden prolongarse indefinidamente.

Llegará un momento en que nos encontraremos que hemos llegado al límite y ya no podremos seguir dividiendo puesto que lo que nos queda es UNA SOLA MOLÉCULA DEL MATERIAL IMANTADO. Ese sería el imán mas pequeño que se puede obtener, una sola molécula que seguirá teniendo sus polos norte y sur orientados de idéntica forma a como los tenía el imán original antes de comenzar nuestras divisiones. Según lo anterior, un imán debe tener TODAS sus moléculas orientadas en el mismo sentido y cada una de ellas se comporta como un imán microscópico con sus polos orientados en la misma dirección que los del imán del que forma parte. Después de saber esto comprendemos perfectamente la diferencia entre un cuerpo imantado y otro que no lo está; radica en la orientación de sus moléculas.

Podemos decir que las moléculas de un trozo de hierro o acero sin propiedades magnéticas originalmente tienen una estructura anárquica y desordenada, de modo que sus campos magnéticos se anulan mutuamente. Cuando el mismo trozo de hierro es expuesto a un campo magnético lo suficientemente fuerte, sus moléculas se ordenan y sus polos adquieren la misma orientación apareciendo entonces el campo magnético, suma del campo magnético de todos sus pequeños imanes moleculares. Este campo magnético volverá a desaparecer en el momento en que sus moléculas vuelvan al desorden y la anarquía. Esta es la diferencia entre los imanes temporales y los permanentes, la facilidad con que los primeros pierden su ordenación molecular.

EL PORQUÉ DEL NOMBRE DE LOS POLOS
En un párrafo anterior hemos indicado que a los polos de un imán se les llama norte y sur pero... ¿como podemos distinguir el uno del otro?. La respuesta está en la geografía terrestre. Si cogemos una brújula, el polo norte de su aguja (que es un imán permanente en toda regla) será el que señala al norte geográfico y el polo sur de dicha aguja el que señala al sur geográfico y esto siempre se ha hecho así por cuestiones relativas a la navegación, por lo que entendemos que esta ha sido la causa que ha dado nombre a los polos del imán. Hemos de saber que la brújula funciona porque la Tierra es un gran imán, un imán enorme que también tiene dos polos, el norte y el sur. Sin embargo aquí observamos lo que parece una contradicción. ¿Recordamos la regla de los polos?... polos distintos se atraen y polos iguales se repelen. ¿Porqué el polo norte del imán de la brújula señala también al polo norte de la Tierra y no a su polo sur como aparentemente debería de suceder?.

La explicación es bién sencilla: Los polos magnéticos de la Tierra están invertidos con respecto a sus polos geográficos. El polo norte geográfico de la Tierra corresponde a su polo sur magnético y viceversa. Mas exactamente, el polo sur magnético de la Tierra está algo desplazado con relación al norte geográfico, concretamente a unos 1600 kilómetros (ver dibujo adjunto). Lo mismo ocurre con el polo sur geográfico el cual está muy cercano al norte magnético pero no coincide exactamente con él. Por lo tanto, lo que realmente señala la aguja de la brújula son los polos magnéticos de la Tierra y no sus polos geográficos.

Dicho esto, para determinar cuales son los polos de un imán solo tenemos que suspenderlo de un hilo y marcar como su polo norte al que señala al norte geográfico de la Tierra y como polo sur al que señala al sur terrestre. Esto es así siempre que nuestro imán no se encuentre sometido a la acción de un tercer campo magnético que influya en su orientación.

Hasta aquí el artículo dedicado al magnetismo. Sin embargo, todavía queda mucha tela que cortar ya que solo hemos hecho una introducción a este fenómeno importantísimo para el estudio de la electrónica y la radio. En el próximo artículo teórico comenzaremos a hablar de otra vertiente del magnetismo. Nos referimos al ELECTROMAGNETISMO, gracias al cual podemos disfrutar hoy dia de los motores eléctricos, de los alternadores, de los instrumentos medidores de corriente analógicos, de los transformadores y autotransformadores, etc... Los radioaficionados pueden oir su emisora gracias al altavoz, pueden girar su antena directiva gracias al rotor, y pueden recibir y emitir señales de radio gracias a su antena y todo ello utiliza el electromagnetismo como base para su funcionamiento. Te esperamos, no faltes.

 
C O M E N T A R I O S   
Gracias

#11 Isabel » 15-11-2019 16:19

Me ha resultado muy interesante, muy completo y muy ameno. Estoy escribiendo un post sobre magnetismo para niños de primaria y tu información me viene genial, porque a mí me van más las letras :D. Por eso, necesitaba algo sencillo de entender y tu explicación es perfecta: accesible y clara :oks:
Muchas gracias. :tsbu:

RE: El magnetismo - Imanes

#10 paola » 09-02-2019 14:44

Pero que buena página!!! :vkg: :plup: :tsbu: :oks: :ppp:

RE: El magnetismo - Imanes

#9 liz » 09-11-2015 19:53

me en canto mesaque un 10 en la prueva :lol:

avi

#8 CHAMIN » 20-11-2013 04:11

:D MUY BUENA INFORMACION

:oooo: danhy

#7 Daniela » 28-05-2013 02:33

Buena informacion :oo: :D :-)

magnetismo

#6 lilian » 10-11-2012 14:19

:-) gracias muy buena informacion

graciasss

#5 LEO » 01-11-2012 17:49

muy buen trabajo!

nose

#4 juan antonio » 22-10-2012 22:06

a mi me ayudo sobre que es el magnetismo

RE: El magnetismo - Imanes

#3 cheli » 25-09-2011 19:51

:-) ola me gusto la info de aki

graxx

#2 ivette » 05-06-2011 22:31

m sivio d muxa ayuda st work... thank you very much

bueno

#1 fernando » 05-03-2011 15:05

me fue de mucha ayuda este articulo para mi tarea. gracias

NO ESTÁS AUTORIZADO PARA COMENTAR
Por favor, regístrate e identifícate en el sistema. Gracias.