Acceso



Registro de usuarios
Contáctenos
Teoría
El receptor elemental (III)

Queremos que este artículo cumpla una doble misión. Por un lado seguiremos ahondando en las partes componentes del receptor elemental para ir avanzando poco a poco hacia nuestro destino. Para ello, nos adentraremos en el estudio del diodo como detector y tocaremos los "detectores de galena" tan usados por nuestros abuelos hace años.

Por otro lado, queremos dejar claro algo referente al sentido de la corriente eléctrica, ya que existe cierta confusión al respecto. Muchos dicen que la corriente eléctrica circula desde el negativo hacia el positivo (eso es lo que enseñamos en esta web). Otros, no obstante, dicen que no, que la corriente va desde el positivo hacia el negativo ya que son muchos los tratados de electrónica que enseñan esto último. ¿Tu que crees?. ¿A que lado te inclinas?.

En honor a la verdad debemos decir que, en lo que al estudio de la electrónica se refiere y a excepción de ciertas parcelas determinadas, prácticamente no influye para nada que la corriente fluya en un sentido o en otro. Sin embargo, no está de más aclarar este concepto y explicar por qué motivo parte de la literatura sobre electricidad y electrónica dice una cosa y parte dice otra muy distinta. ¿Te interesa?. Pasa adentro, por favor.

Leer más...
Otros Temas Interesantes
Noticias
Cuando la crisis aprieta

Meditando un poco sobre lo que ha sido mi vida, hubo un periodo de tiempo durante el cual estaba acostumbrado a ciertas "delicatessen" por parte de mis educadores.

Recuerdo en los años 60, cuando solo era un niño, como alguna que otra mañana de domingo de primeros de mes, mis abuelos, que ejercían como padres, me despertaban ofreciéndome una onza de chocolate. Era algo extraordinario, ya que no llegaba el sueldo para comprarlo cada semana. Aquel chocolate me sabía a verdadera gloria, "gloria bendita" como dirían algunos.

Era normal, sobre todo cuando la mensualidad llegaba a su fin, que el almuerzo o la cena, o incluso ambos, estuviera compuesto de patatas y huevos. Era lo que en la región donde vivo, y sigo viviendo, llamamos "papas" fritas con huevos. Esto también me sabía a gloria y, he de reconocerlo, me sigue sabiendo.

Sin embargo, he de decir que desde hace mucho tiempo en este país, y puntualizo que me refiero a España, no vivíamos unos momentos tan difíciles como los que están aconteciendo desde hace unos años. Tanto es así que a muchas familias que en la actualidad han sido presa de las garras del sistema, quizás por su propia inconsciencia, les parecería una verdadera "delicatessen" una onza de chocolate o un plato de "papas" fritas con huevos.

Leer más...
Radioaficionados
Oscilador de laboratorio hasta 200 MHz

Para un radioaficionado es importantísimo saber usar y manipular los circuitos resonantes. Conocer a que frecuencia oscila uno de estos circuitos es, la mayoría de las veces, uno de los problemas mas habituales con los que tiene que enfrentarse el experimentador.

No obstante, en muchas ocasiones no se dispone del instrumental adecuado para realizar una medida de este tipo. Aunque es posible que dispongamos de un frecuencímetro, en la mayoría de las ocasiones no es suficiente, ya que es probable que no tengamos los medios para hacer oscilar al circuito tanque en cuestión.

Por esta razón, traemos a nuestro blog un pequeño dispositivo con el que podremos realizar esta medida con total seguridad y fiabilidad, además de ser útil para otros menesteres. Básicamente se trata de un oscilador al que únicamente le falta el circuito resonante objeto de nuestra medición. Dicho oscilador se acompaña de la circuitería necesaria para poder usarlo con nuestro frecuencímetro sin que el acoplamiento de este último afecte lo más mínimo a su frecuencia de resonancia. Y lo mejor de todo es que este circuito puede hacer oscilar "casi cualquier cosa que tenga espiras".

El montaje se lleva a cabo con solo seis transistores, uno de ellos el conocido JFET de canal "N" tipo BF-245, de muy fácil localización en el mercado, e incorpora técnicas para estabilizar la amplitud de la señal producida dentro de unos márgenes razonables, pudiendo llegar a oscilar hasta casi los 200 MHz.

Leer más...
Miscelanea
Monitor para la batería del automóvil

Es curioso, pero la verdad es que a todos nos ha pasado alguna vez lo mismo. Nos levantamos una mañana de frio invierno, con prisas porque tenemos el tiempo justo para llegar al trabajo (el que tenga esa suerte). Introducimos la llave de contacto de nuestro auto y la giramos. ¡SORPRESA!... el motor de arranque no voltea o lo hace con desgana.

El coche no furula, no arranca... Entonces algunos manifestamos nuestro enfado en un idioma desconocido, emitiendo ciertos sonidos guturales como.... "Grrrrrrrrr!!!!!". Otros, algo más "expresivos", comenzamos a lanzar por nuestra boquita ciertos vocablos malsonantes, dirigidos sobre todo hacia nuestro sufrido auto que ya tiene, como poco, cinco o seis años.

Sin embargo, esta situación la podríamos haber evitado si hubieramos tenido instalado el circuito que describimos en el presente artículo. Se trata de un simpático piloto de color rojo que nos avisará antes de tiempo de que ha llegado la hora de sustituir la batería de nuestro coche.

Si has leido los dos primeros artículos de la sección "Básico" estamos seguros que no vas a tener problemas para asimilar lo que sigue. ¡Vamos allá!

Leer más...
Práctica
Monitor para fusible mejorado

En un artículo anterior de nuestro blog ya abordamos un montaje titulado "Indicador de fusible fundido" mediante el cual tuvimos la oportunidad de estudiar el multivibrador astable.

Posteriormente publicamos otro artículo titulado "Monitor para fusible", en el que presentábamos un circuito mucho más simple que el primero, que iluminaba un led cuando el fusible fundía.

Sin ánimo de ser insistente, os queremos presentar ahora este otro monitor algo más sofisticado que el segundo y menos complicado que el primero, mediante el cual podemos saber de un vistazo si nuestro aparato electrónico está recibiendo la alimentación adecuada, o por contra, está interrumpida por culpa de un fusible defectuoso.

En esta ocasión usaremos un doble diodo LED con cátodos comunes. El encendido del LED de color verde (¡PERFECTO!) nos indicará el funcionamiento correcto del dispositivo, mientras que si el LED que luce es el de color rojo (¡ALARMA!) querrá decir que el fusible está interrumpido.

Debido a la extremada sencillez del circuito creemos que merece la pena integrarlo en alguno de nuestros montajes, según consideremos o no la necesidad o conveniencia de que incorpore la mencionada indicación.

Clica en "Leer completo..." para ver más detalles.

Leer más...
Teoría
Las leyes de Kirchhoff

¡Hay en la actualidad tanta literatura publicada en Internet sobre este tema que unos momentos antes de comenzar a desarrollar este artículo casi optamos por abandonar la labor y pasar a otro asunto!. Sinceramente, durante cierto tiempo experimentamos bastante indecisión para acometer esta iniciativa.

Sin embargo, al final se impusieron las ganas y la voluntad de divulgar unos conocimientos que, en muchísimas ocasiones, aquellas personas interesadas no tienen suficientemente claros.

Efectivamente, nos referimos a las célebres y famosas "Leyes de Kirchhoff", una especie de bestia negra de algunos estudiantes en sus correspondientes exámenes de tecnología o ingeniería, y muro insalvable para algunos aficionados e incluso profesionales de la electricidad y/o la electrónica.

Pero... ¿en realidad son tan complicadas y enrevesadas estas dos leyes promulgadas por el ínclito prusiano Gustav Robert Kirchhoff mientras todavía era un estudiante?... ¿por qué a determinados individuos les cuesta tanto entenderlas?... ¿tan elevado es su nivel de dificultad?.

Con este artículo vamos a hacer que comprendas los entresijos de las dos leyes de Kirchhoff. Te las mostraremos "con pelos y señales". Pero antes es imprescindible que repasemos algunos conceptos básicos de análisis de circuitos eléctricos. ¡Tranquilo...!. Hemos dicho "conceptos básicos" y no un curso completo sobre el tema.

¿Te atreves?.... Pues pasa adentro...

Leer más...
Noticias
Curso de ELECTRÓNICA BÁSICA 04

PUBLICADO EL CAPÍTULO 4

Todos nuestros visitantes ya podeis visualizar el capítulo 4 de nuestro Curso de Electrónica Básica. En este video, de unos 18 minutos de duración, hablamos de temas muy interesantes para los que empiezan. A continuación resumimos su contenido.

Leer más...

Electromagnetismo (I)

En nuestro artículo teórico anterior en el que hablábamos del magnetismo y de los imanes, dijimos que la electricidad produce magnetismo y que el magnetismo produce electricidad. En realidad una cosa y la otra están íntimamente unidas. Como ya hemos comentado, la electricidad y el magnetismo son dos aspectos diferentes de un mismo fenómeno físico llamado electromagnetismo y es precisamente ese fenómeno lo que en este artículo vamos a comenzar a tratar. Este conocimiento es de absoluta necesidad para seguir nuestro estudio.

Para bién o para mal, el electromagnetismo está muy presente en nuestras vidas; en cada electrodoméstico que tenemos en casa, en todos los sistemas de comunicaciones actuales (las señales de humo utilizadas por los indios norteamericanos no es un sistema de comunicación actual), en los automóviles y motocicletas, en los sistemas de posicionamiento global o GPS, en los sistemas de telemetría, en el registro y reproducción del sonido, en los equipos medicos y quirúrgicos utilizados en los hospitales, etc... Es tan vasto el campo de aplicación del electromagnetismo en la vida real que nos faltaría espacio en este artículo para nombrar cada una de estas posibilidades. Por la importancia que tiene, es vital que conozcas mas profundamente este fenómeno. Por lo tanto, estás obligado a seguir leyendo.

MAGNETISMO POR CORRIENTE
Ya hemos dicho que la electricidad produce magnetismo y que el magnetismo produce electricidad.

En este apartado vamos a estudiar la primera parte de esta afirmación y vamos a demostrar que podemos crear un campo magnético mediante el uso de una corriente eléctrica. Sabemos, según lo estudiado en el artículo dedicado al magnetismo, que la aguja de una brújula señala en la dirección Norte-Sur siempre que no se vea afectada por algún otro campo magnético que no sea el terrestre. Si efectivamente hacemos que dicha aguja se desvíe de su posición natural estaremos demostrando la existencia de un campo magnético que está influyendo en su funcionamiento normal y que interfiere en su correcta señalización. Profundicemos un poco sobre esto.

Vamos a coger nuestra brújula, una simple pila, un interruptor y un hilo de cobre rígido de una sección entre 1,5 y 2,5 mm. Dispongamos estos componentes como mostramos en la ilustración. Mientras no cerremos el interruptor y no circule corriente alguna por el conductor de cobre nuestra brújula marcará la orientación Norte-Sur correcta. Pero... ¿que ocurre en el momento en que cerremos el interruptor y comience a circular la corriente eléctrica a través del conductor de cobre?.

Al hacer esto la aguja de la brújula se desplaza de la posición que tenía antes de hacer pasar la corriente eléctrica y deja de señalar la orientación correcta (hacer clic para ver animación). Con esta evidencia demostramos la existencia de un campo magnético producido por la electricidad que hemos hecho circular, y hemos de hacer constar que antes de hacer circular la corriente dicho campo magnético no existía. Lo que hemos creado se llama "CAMPO ELECTROMAGNÉTICO" al tratarse de un campo magnético producido por una corriente eléctrica.

En el artículo anterior también hemos hablado de otro método para poner en evidencia el campo magnético creado al hacer pasar una corriente eléctrica por un conductor. En esta ocasión vamos a utilizar una cartulina y unas pocas limaduras de hierro además de la consabida pila, el interruptor y el conductor eléctrico de cobre rígido. Fíjate en el dibujo adjunto. Mientras el interruptor permanezca abierto no ocurre nada y las limaduras de hierro permanecen exactamente igual que cuando las depositamos en la cartulina ya que no circula ninguna corriente eléctrica. En el momento en que cerremos el interruptor y la corriente eléctrica comience a circular... ¿que pasa?. Como por arte de magia las limaduras se situan alrededor del alambre de cobre formando círculos concentricos tomando como centro al conductor que atraviesa la cartulina. Ten en cuenta que a veces hay que dar unos pequeños golpecitos a la cartulina para ayudar a las limaduras de hierro a situarse. Queda claro con este experimento que la corriente eléctrica crea un campo magnético circular alrededor de nuestro conductor de cobre.

CORRIENTE POR MAGNETISMO
Como hemos repetido hasta la saciedad, la electricidad y el magnetismo están intimamente unidos y caminan juntos de la mano. Por lo tanto es lógico pensar que el fenómeno anterior es reversible, es decir, al igual que la electricidad puede producir magnetismo, el magnetismo podría tener la facultad de producir electricidad. Pués efectivamente va a ser que sí. A partir de un campo magnético podemos obtener una corriente eléctrica y además podemos comprobarlo de forma muy sencilla.

Para ello necesitamos un imán de herradura que tenga una potencia relativamente alta y un miliamperímetro que sea lo suficientemente sensible, preferiblemente analógico y con cero central. Con hilo de cobre rígido de unos 2 o 3 milímetros de sección tenemos que hacer una varilla recta conectada al miliamperímetro con hilo de cobre flexible como vemos en el dibujo. Dicha varilla rígida la colocaremos entre los polos del imán y le imprimiremos un movimiento de vaivén. Cuando la varilla atraviese las lineas de flujo del imán podremos observar como el instrumento señala el paso de una corriente y lo hará cada vez que la varilla se mueva dentro del campo magnético del imán. Dicha corriente tendrá un sentido u otro dependiendo de la dirección que tome la varilla en su movimiento de vaivén.

Fíjate en esto; si dejamos inmóvil la varilla y es el imán el que movemos el fenómeno se repite, es decir, que la corriente eléctrica se produce de igual manera tanto cuando dejamos inmovil la varilla y movemos el imán, como cuando dejamos inmóvil el imán y lo que movemos es la varilla. Lo que es absolutamente necesario para que aparezca la corriente eléctrica es que exista movimiento entre imán y varilla y que esta última atraviese el campo magnético del imán, ya sea moviendo una cosa o la otra. Lógicamente, para que la corriente producida sea permanente también el movimiento deberá permanecer en el tiempo.

Gracias a este experimento podemos afirmar que al igual que una corriente eléctrica puede producir un campo magnético la situación inversa también es cierta, es decir, que cuando un conductor atraviesa un campo magnético y alguno de los dos se mueve con respecto al otro, entonces se origina una corriente eléctrica. Esto que acabamos de decir es una de las cosas más importantes descubiertas en el campo de la electricidad, y sus aplicaciones son inmensas como veremos mas adelante.

SENTIDO DEL CAMPO MAGNÉTICO
Lo que determina el sentido de las lineas de fuerza del campo magnético de un conductor por el que circula una corriente eléctrica es precisamente la dirección de dicha corriente. Por esta razón, en los cables eléctricos paralelos dichos campos magnéticos tienden a anularse el uno al otro al circular la corriente por ambos al mismo tiempo y en direcciones diferentes, es decir, mientras por uno de los cables la corriente se aleja por el otro retorna.

El sentido del campo magnético en un conductor recto puede determinarse facilmente mediante la llamada REGLA DE LA MANO IZQUIERDA. Su enunciado dice lo siguiente:

Si un conductor se coge con la mano izquierda y hacemos que nuestro dedo pulgar apunte en el sentido en que circula la corriente, los dedos que rodean el conductor indicarán la dirección del flujo magnético

Para entender a la perfección el significado de esta regla basta con mirar la ilustración adjunta. Como ya hemos mencionado, la regla de la mano izquierda tiene aplicación siempre que estemos tratando con un conductor recto. Pero... ¿que ocurre al darle a nuestro conductor la forma de una espira?. El próximo tema promete ser interesante.

SOLENOIDES O BOBINAS
Si cogemos nuestro conductor recto y le damos la forma de una espira resulta que nuestro invento se comporta como un pequeño imán, con su polo norte y su polo sur. El polo norte es la parte de la espira por la que sale el flujo magnético, mientras que el polo sur es la parte de la espira por la que entra dicho flujo. La realidad es que el campo magnético creado por nuestra espira es muy débil, sin embargo, por débil que sea existe, está ahí. La pregunta ahora es... ¿Que podemos hacer para reforzar ese campo magnético y hacerlo mas poderoso?.

¿Recuerdas la frase del fabulista griego Esopo "La unión hace la fuerza"? Esta frase hace hincapié en la importancia del trabajo en equipo, y eso es precisamente lo que vamos ha hacer con nuestra espira. Vamos a fabricar lo que se llama un solenoide o bobina juntando muchas espiras de manera que sus campos magnéticos se van a sumar y vamos a obtener uno con una fuerza mucho mayor. Para que los campos magnéticos se sumen las espiras deberán estar muy próximas unas a otras, por lo que es obligado bañar al conductor utilizado en un barniz aislante para evitar cortocircuitos cuando las espiras se toquen entre sí.

Cuando circula una corriente eléctrica por él, un solenoide se comporta exactamente igual que un imán. Su campo magnético es idéntico al creado por un imán permanente por lo que obtenemos un polo Norte y un polo Sur, lo mismo que con un imán de hierro, acero o magnetita.

Mediante otra sencilla regla, podemos determinar cual es el polo Norte y cual el polo Sur de nuestro solenoide. Para ello recurriremos de nuevo a nuestra mano izquierda. La regla, en esta ocasión, dice lo siguiente:

Si colocamos los dedos de nuestra mano izquierda sobre un solenoide de manera que señalen la dirección que sigue la corriente que circula por él, nuestro dedo pulgar extendido nos señalará el Norte del campo magnético producido

De nuevo te remitimos a la ilustración adjunta para que veas con claridad el significado del enunciado anterior.

Hasta aquí el primer artículo dedicado al electromagnetismo. En el próximo artículo continuaremos hablando de la inducción y autoinducción magnética y electromagnética, técnicas muy utilizadas en radio, además de otras cosas muy interesantes que no te deberías perder. Hasta entonces, nos vemos pronto.

 

NO ESTÁS AUTORIZADO PARA COMENTAR
Por favor, regístrate e identifícate en el sistema. Gracias.