Acceso



Registro de usuarios
Contáctenos
Teoría
El receptor elemental (VI)

Una vez que hemos visto qué es un condensador y cual es su funcionamiento tanto en circuitos de corriente continua como en circuitos de corriente alterna, pasamos a ver que papel juega este componente electrónico en el selector de frecuencias de nuestro receptor elemental.

Ya hemos mencionado que el selector de frecuencias de nuestro sencillo receptor lo forman dos componentes: una bobina y un condensador. A estas alturas conocemos ambos elementos y, básicamente y de forma aislada, sabemos como funcionan. Ahora nos toca profundizar un poco en el comportamiento de los mismos cuando se montan juntos, formando ambos el corazón del selector de frecuencias de nuestro receptor.

Es verdad que hemos comentado que lo que ocurre en este tipo de circuitos es algo un tanto complejo, pero esto no va a impedir que, mediante varios ejemplos y con algunas ilustraciones, conozcamos los efectos que se producen cuando bobina y condensador hacen su trabajo particular de seleccionar señales de R.F. en el receptor que estamos estudiando. ¿Te apetece seguir?.

Leer más...
Otros Temas Interesantes
Noticias
AFHA - Dibujar es fácil - Tomo 3

Tomo 3 del curso Dibujar es Fácil de AFHA.

Leer más...
Radioaficionados
Regulador PWR para SuperStar 3900

Existen emisoras que marcan la diferencia, que dejan huella, que nunca se olvidan. Una de éstas es la mítica Superstar en sus diferentes versiones. Tomando como base el modelo 3900 vamos ha desarrollar en este artículo la información necesaria para colocarle un regulador de potencia de salida de radiofrecuencia (RF) para AM y FM.

En la web existe mucha información sobre esta emisora, incluso hemos visto algún que otro artículo sobre el tema que nos ocupa. Sin embargo la información que hemos encontrado en la red no está detallada y además no es muy precisa ni todo lo exacta que requiere algo así. Una persona sin mucha experiencia podría encontrarse con un serio disgusto si la llevara a cabo debido a las lagunas que acompañan estas informaciones.

Por esta razón hemos decidido hacer un artículo repleto de ilustraciones y muy detallado, con la idea de que su puesta en práctica les resulte fácil a aquellos que no tienen la experiencia suficiente en trabajos de este tipo y que puedan llevarla a cabo sin ningún tipo de problema. Con solo un soldador, algo de estaño y un par de cablecillos podrás incorporar a tu Superstar 3900 un práctico regulador para controlar en todo momento su potencia de salida en AM o FM, lo cual es muy conveniente (yo diria que absolutamente necesario) en caso de usar un amplificador de salida de RF. Una vez instalado deberás tener en cuenta la legislación vigente en esta materia y no sobrepasar la potencia máxima permitida, que en España es de 4 Watios tanto para AM como para FM.

Leer más...
Miscelanea
La circunferencia, el círculo y el número PI (π)

La mayor parte de las personas que vivimos en paises desarrollados, quizás porque estamos acostumbrados a obtenerlo todo con suma facilidad y/o que las cosas vengan a nosotros como caídas del cielo, a menudo las damos por sentadas de manera automática.

Practicamente en ningún momento nos preguntamos porqué algo es o se produce de una determinada manera. Nos basta con saber que tal o cual cosa es como es y punto, lo aceptamos sin reservas.

Algo así nos ha ocurrido a muchos cuando asistíamos a la escuela, en épocas pasadas. ¿Recuerdas cuando aprendiste la fórmula para hallar la longitud de la circunferencia?. ¿O cuando te enseñaron la fórmula para calcular la superficie del círculo?. Todos las aceptamos sin pestañear, y pocos fuimos los que nos preguntamos de donde habia salido el famoso número PI (π). Muchos daban por sentado que aquello era así porque lo decía nuestro profesor de matemáticas y se acabó.

Pero en realidad, esas conocidas fórmulas han salido de algún sitio o, mejor dicho, han sido promulgadas por una o varias personas después de haber dedicado mucho tiempo y esfuerzo al estudio de estas figuras geométricas.

¿Te gustaría saber más sobre este tema y conocer como se han llegado a obtener las mencionadas fórmulas y como están relacionadas entre ellas?... ¡Pues clica en "Leer completo..." ya!.

Leer más...
Práctica
Detector de polaridad

Uno de los mayores errores que se cometen al enchufar equipos electrónicos a baterías o a fuentes de alimentación de corriente continua es la inversión de polaridad. ¿Te ha ocurrido esto a ti alguna vez al instalar una emisora de radioaficionado en tu automóvil y conectarla a su circuito eléctrico?.

Cuando se da esta circunstancia uno se pregunta... "¿como me ha podido pasar a mi?. No es posible, estoy viviendo un mal sueño, una pesadilla. Yo siempre voy con muchísimo cuidado. Pronto despertaré...". Pero no. Por desgracia no se trata de un sueño sino de una situación real. Has cometido el error más frecuente cuando se manejan equipos electrónicos con alimentación continua exterior; la temida inversión de polaridad.

Para que esto no te vuelva a pasar vamos a enseñarte a construir un sencillo aparato con el que podrás detectar muy facilmente la polaridad de una tensión continua desde 2 hasta 230 voltios aproximadamente. También te indicará, caso de que no se trate de una tensión continua, si dicha tensión es alterna.

Mediante unos diodos LED bicolor este tester te marcará, sin ninguna posibilidad de error, cual es el polo positivo y cual el negativo de una determinada toma de corriente eléctrica o si por contra se trata de una tensión alterna. ¿Te interesa?. Sigue leyendo, por favor...

Leer más...
Teoría
Telecomunicaciones - El teléfono

Indudablemente, el telégrafo fué un adelanto tecnológico importantísimo en una sociedad en la que nunca habían existido las comunicaciones instantáneas a larga distancia. Aunque una persona que tuviera la necesidad de comunicarse con alguien situado a cientos de kilómetros de distancia tuviera que salir del hogar e ir a la oficina telegráfica más cercana para poner el mensaje, aquello no era en modo alguno un obstáculo importante. Lo verdaderamente importante era que esa persona recibiera el mensaje a los pocos minutos, sin importar el tener que desplazarse fuera de casa y solicitar los servicios de los telegrafistas profesionales habituados al código Morse. Pero los seres humanos siempre queremos más y además tendemos a la comodidad.

Lo ideal, en aquel momento, era no tener que depender de una oficina de telégrafos y poder expresar directamente a la persona interesada, con nuestras propias palabras, aquello que queríamos transmitirle, y si no se tuviera que salir de casa para ello... ¡mucho mejor!. Se imponía la necesidad de poder transmitir de manera instantánea la voz humana. Los científicos se pusieron manos a la obra y un buen dia... ¡voilá!... nació el teléfono.

Leer más...
Noticias
Curso de ELECTRÓNICA BÁSICA 03

PUBLICADO EL CAPÍTULO 3

Publicado el tercer capítulo de nuestro CURSO DE ELECTRÓNICA BÁSICA. Puedes visualizarlo en este mismo artículo.

Leer más...

Oscilador de laboratorio hasta 200 MHz

Para un radioaficionado es importantísimo saber usar y manipular los circuitos resonantes. Conocer a que frecuencia oscila uno de estos circuitos es, la mayoría de las veces, uno de los problemas mas habituales con los que tiene que enfrentarse el experimentador.

No obstante, en muchas ocasiones no se dispone del instrumental adecuado para realizar una medida de este tipo. Aunque es posible que dispongamos de un frecuencímetro, en la mayoría de las ocasiones no es suficiente, ya que es probable que no tengamos los medios para hacer oscilar al circuito tanque en cuestión.

Por esta razón, traemos a nuestro blog un pequeño dispositivo con el que podremos realizar esta medida con total seguridad y fiabilidad, además de ser útil para otros menesteres. Básicamente se trata de un oscilador al que únicamente le falta el circuito resonante objeto de nuestra medición. Dicho oscilador se acompaña de la circuitería necesaria para poder usarlo con nuestro frecuencímetro sin que el acoplamiento de este último afecte lo más mínimo a su frecuencia de resonancia. Y lo mejor de todo es que este circuito puede hacer oscilar "casi cualquier cosa que tenga espiras".

El montaje se lleva a cabo con solo seis transistores, uno de ellos el conocido JFET de canal "N" tipo BF-245, de muy fácil localización en el mercado, e incorpora técnicas para estabilizar la amplitud de la señal producida dentro de unos márgenes razonables, pudiendo llegar a oscilar hasta casi los 200 MHz.

Para no complicar mucho la construcción del oscilador se ha implementado una configuración muy sencilla en base a dos transistores montados como pseudo-multivibrador, al cual solo le hace falta el circuito resonante necesario para comenzar a funcionar. El esquema es el que mostramos a continuación. Puedes hacer clic en él para abrirlo en una nueva ventana y verlo con más comodidad.

Como puedes apreciar, no se trata de un circuito demasiado complicado. La señal del oscilador se toma del propio circuito resonante y se aplica a la puerta del JFET BF-245, el cual no lo cargará en absoluto en base a su altísima impedancia de entrada, por lo que este acoplamiento no modificará la frecuencia del oscilador.

Después de la amplificación introducida por el JFET la señal ha adquirido cierta amplitud, pero aún no es suficiente para el uso que nos hemos propuesto. Por eso tomaremos dicha señal del drenador del BF-245 y la aplicaremos a la base del transistor T5 (BF-199) montado en configuración de emisor común. La amplificación introducida por este último hace que nuestra señal tenga ya la amplitud adecuada para utilizarla según nuestros propósitos.

Posteriormente, del colector de T5 tomaremos la señal y la aplicaremos a la base de T6 (otro BF-199) el cual en este caso está montado como seguidor de emisor o colector común, y aunque prácticamente no amplifica si que consigue una baja impedancia de salida y una total independencia de la señal de entrada. La salida de este transistor se aplicará directamente a nuestro frecuencímetro.

Se ha incorporado al circuito una especie de control automático de nivel mediante el transistor T3 (BC-557) para estabilizar la amplitud de la señal de salida e intentar que ésta fluctúe lo menos posible dentro del margen de frecuencias en el que opera el oscilador. Para realizar este trabajo, mediante el condensador C5 (330KpF) y la resistencia R3 (1KΩ) se toma parte de la señal amplificada por T5 y se rectifica mediante los diodos D1 y D2 (ambos del tipo 1N4148).

La tensión continua así obtenida sirve para controlar la polarización del transistor T3, de manera que mediante él se modificará la tensión de alimentación aplicada al oscilador formado por T1 y T2, aumentando ésta cuando la amplitud de la señal disminuya, y bajándola cuando la amplitud de la señal aumente.

Debemos hacer notar que este circuito no funcionará conectándole solo una bobina, siendo necesario SIEMPRE colocar un condensador en paralelo con ella, formandose así el circuito tanque correspondiente que hará arrancar al oscilador.

También debemos indicar que el circuito ha de alimentarse con una tensión estabilizada de 12 voltios si se desea obtener una estabilidad de frecuencia elevada. Si se utiliza un alimentador no estabilizado se correrá el riesgo de que nuestro oscilador no disfrute de esa ansiada virtud.

En el esquema anterior proponemos un sencillo circuito para obtener los 12 voltios estabilizados necesarios para alimentar nuestro oscilador. El alma del alimentador lo constituye un simple regulador de tensión positiva de 12 voltios tipo 7812, completandose el montaje con todos sus componentes asociados. Puedes hacer clic en él para verlo con más comodidad.

Nos gustaría resaltar que este circuito oscilador tiene una infinidad de utilidades además de la que ya hemos dejado entrever. Con él no solo podremos comprobar los transformadores de F.I. de receptores en 455 KHz y por supuesto también los de 10,7 MHz, sino también obtener una señal de alguna de estas frecuencias para el ajuste de receptores.

Efectivamente, conectando un transformador de F.I. al oscilador se podrá comprobar, al girar su núcleo de ferrita, las frecuencias máxima y mínima a las que es capaz de ajustarse, frecuencias que podremos leer en el frecuencímetro conectado a nuestro oscilador.

Nuestro circuito, al poder funcionar dentro de un gran ancho de banda, también puede ser útil si necesitamos una señal de B.F., ya que si conectamos a su entrada una inductancia suficientemente elevada, conjuntamente con un condensador de una capacidad apropiada, podremos obtener una señal para ajustar filtros de audio, por ejemplo.

También tendremos la posibilidad de medir la capacidad de un condensador si lo conectamos a una inductancia de la cual conocemos su valor, y viceversa, medir la inductancia de una bobina conociendo el valor del condensador conectado a ella en paralelo. En fin, como puedes ver las posibilidades son ilimitadas.

A la hora de hacer el montaje procura que las conexiones sean lo más cortas posibles. De esta manera la frecuencia máxima de utilización del oscilador será la más alta posible. Si descuidas este punto es posible que el oscilador no consiga funcionar en frecuencias altas.

Si no dispones de frecuencímetro, aún podrás usar este oscilador como un perfecto generador de señal de alta y baja frecuencia. Para ello, en vez de usar un condensador fijo en el circuito oscilante, usa un condensador variable que te permita un margen de frecuencias determinado según tus necesidades.

Puedes bajarte el diseño de la placa de circuito impreso adecuado para este montaje, así como la distribución de componentes, de la zona de descargas de nuestra web.

 
C O M E N T A R I O S   
Probar ancho de banda de osciloscopios con cristal

#7 Thomas Hoffmann » 19-12-2020 03:06

Disculpen en mi anterior comentario olvidé preguntar si en vez del circuito resonante se puede poner un cristal de cuarzo de 100Mhz. Denuevo gracias.

Probar ancho de banda de osciloscopios

#6 Thomas Hoffmann » 19-12-2020 02:38

Llevo tiempo buscando una oscilacion de aproximadamente 100 Mhz ,he hecho varios circuitos y ninguno de ellos consiguio pasar de 17 Mhz, he adquirido toda clase de componentes para hacerlo, inductancias, cristales de cuarzo, etc y estoy a punto de perder la paciencia pero no de desistir, Tratare de hacer el esquema que muestran aqui, y ojalá me funcione, le estatria eternamente agradecido. Muchisimas gracias por la informacion.

CONSULTA

#5 P. Alejandro » 11-09-2019 17:00

MUY BUEN CIRCUITO! Lo voy a armar! Una consulta, los capacitores que tienen la letra "K" (100K) que significan? 100.000 pf?

RE: Saludos

#4 Ernesto Hernández » 24-05-2018 21:19

:pns: Alguien ha construido este circuito de manera práctica? Funciona? Qué tan pura es la onda generada a una frecuencia de 150MHz?

Saludos

#3 Pablo Granda » 25-10-2017 18:43

hola una consulta que simulador usa para realizar la simulación del circuito

Re:oscilador de laboratorio

#2 jose » 26-01-2015 02:53

Excelente trabajo. Voy a armar el circuito y lo probare hasta maxima frecuencia. Gracias!

RE: Oscilador de laboratorio hasta 200 MHz

#1 julio cesar » 27-10-2014 19:26

ES FANTASTICO ESA LABOR. :lol:

NO ESTÁS AUTORIZADO PARA COMENTAR
Por favor, regístrate e identifícate en el sistema. Gracias.