Acceso



Registro de usuarios
Contáctenos
Teoría
Protección contra sobretensiones

Todo aquel que ha estado reparando equipos de radio durante cierto tiempo sabe que en multitud de ocasiones llegan al SAT los clásicos "cadáveres" que han sufrido una sobretensión.

Normalmente, la gran mayoría de estos equipos vienen protegidos de origen contra inversiones de polaridad, siempre que se le respete el valor al fusible... ¡claro!, pero no todos vienen con una protección contra sobretensiones.

Para aclararle el significado del término a aquellos que no sepan que significa "sobretensión", se trata de aplicarle a la emisora una tensión de polaridad correcta pero bastante más elevada que la nominal. Por ejemplo, "meterle" los 24 voltios de las dos baterías de un camión en vez de los 12 o 13 voltios necesarios.

Y antes dije cadáveres (entre comillas) porque, para desgracia para su dueño, cuando acontece esta vicisitud provoca un verdadero desastre en el aparato; etapas de potencia de audio, finales y drivers de RF, reguladores, etc... Generalmente la sobretensión arrasa con todo, incluida la billetera de su propietario.

Parece mentira pero, como en muchas otras situaciones de la vida, los accidentes más graves podrían reducirse a cero con un costo mínimo y con algo más de previsión.

Si deseas saber como prevenir una sobretensión en tu equipo de radio, de una manera muy simple, lee el resto de este artículo.

Leer más...
Otros Temas Interesantes
Noticias
Versión 11.4.0.471 de Coil32

Nuevamente publicamos la versión más reciente a fecha de hoy (11.4.0.471) del software de cálculo de inductancias y circuitos resonantes LC "Coil32".

Como ya indicamos en nuestra anterior noticia relativa a este software, la interface está debidamente traducida al castellano por nosotros (aunque su autor la incluye en la descarga original y la atribuye a otra persona). A este respecto hemos de indicar que la traducción para esta versión está sensiblemente mejorada con respecto a las anteriores.

Leer más...
Radioaficionados
Como mejorar el receptor de galena

Como continuación al artículo relativo al receptor con diodo de cristal o radio galena, presentamos la siguiente información en la que explicamos como mejorar dicho receptor de radio. No en vano, las mejoras introducidas conseguirán un mayor rendimiento de sus características.

Comenzaremos con una pequeña modificación de nuestro receptor original, añadiendole un transistor para obtener una pequeña amplificación de señal.

Lo verdaderamente interesante, sin embargo, es que a pesar de usar un componente activo, en un principio seguiremos usando solo la energía recibida por la antena, es decir, no usaremos ninguna bateria, pila ni fuente de alimentación.

Posteriormente, en este mismo artículo, estudiaremos otros circuitos a los que iremos dotando de mayor amplificación y a los cuales añadiremos ya una pequeña pila, con lo que el rendimiento obtenido será mayor y tanto su sensibilidad como su selectividad se verán ostensiblemente incrementadas con respecto a las ofrecidas por receptores anteriores.

Si verdaderamente te interesa la radio no puedes dejar de leer este apasionante artículo.

Leer más...
Miscelanea
La circunferencia, el círculo y el número PI (π)

La mayor parte de las personas que vivimos en paises desarrollados, quizás porque estamos acostumbrados a obtenerlo todo con suma facilidad y/o que las cosas vengan a nosotros como caídas del cielo, a menudo las damos por sentadas de manera automática.

Practicamente en ningún momento nos preguntamos porqué algo es o se produce de una determinada manera. Nos basta con saber que tal o cual cosa es como es y punto, lo aceptamos sin reservas.

Algo así nos ha ocurrido a muchos cuando asistíamos a la escuela, en épocas pasadas. ¿Recuerdas cuando aprendiste la fórmula para hallar la longitud de la circunferencia?. ¿O cuando te enseñaron la fórmula para calcular la superficie del círculo?. Todos las aceptamos sin pestañear, y pocos fuimos los que nos preguntamos de donde habia salido el famoso número PI (π). Muchos daban por sentado que aquello era así porque lo decía nuestro profesor de matemáticas y se acabó.

Pero en realidad, esas conocidas fórmulas han salido de algún sitio o, mejor dicho, han sido promulgadas por una o varias personas después de haber dedicado mucho tiempo y esfuerzo al estudio de estas figuras geométricas.

¿Te gustaría saber más sobre este tema y conocer como se han llegado a obtener las mencionadas fórmulas y como están relacionadas entre ellas?... ¡Pues clica en "Leer completo..." ya!.

Leer más...
Práctica
Microfono inalámbrico en FM "mini"

Con solo cuatro resistencias, unos pocos condensadores, un transistor y una pila vamos a construir un micrófono inalámbrico en FM de muy reducidas dimensiones.

Somos conscientes de la gran diversidad de circuitos de este tipo que circulan por la red. Sin embargo, muchos de ellos no están suficientemente detallados y a la hora de llevarlos a la práctica son problemáticos. Otros no tienen diseñada la correspondiente placa de circuito impreso, por lo que su montaje resulta bastante fastidioso.

Con nuestro circuito hemos querido llenar el hueco que creemos que falta en este ámbito; conseguir un micrófono inalámbrico en FM sencillo, eficaz, casi miniatura, fácil de implementar y con todos los datos pormenorizados necesarios para poder llevarlo a cabo sin problemas.

La información que corresponde a este artículo se la podrán bajar en formato PDF todos nuestros visitantes, registrados y no registrados, ya que se colgará en la sección de descargas gratis. Agradeceremos mucho su colaboración si hacen comentarios con sus experiencias al respecto.

¿Os apuntais a este reto?

Leer más...
Teoría
El receptor elemental (III)

Queremos que este artículo cumpla una doble misión. Por un lado seguiremos ahondando en las partes componentes del receptor elemental para ir avanzando poco a poco hacia nuestro destino. Para ello, nos adentraremos en el estudio del diodo como detector y tocaremos los "detectores de galena" tan usados por nuestros abuelos hace años.

Por otro lado, queremos dejar claro algo referente al sentido de la corriente eléctrica, ya que existe cierta confusión al respecto. Muchos dicen que la corriente eléctrica circula desde el negativo hacia el positivo (eso es lo que enseñamos en esta web). Otros, no obstante, dicen que no, que la corriente va desde el positivo hacia el negativo ya que son muchos los tratados de electrónica que enseñan esto último. ¿Tu que crees?. ¿A que lado te inclinas?.

En honor a la verdad debemos decir que, en lo que al estudio de la electrónica se refiere y a excepción de ciertas parcelas determinadas, prácticamente no influye para nada que la corriente fluya en un sentido o en otro. Sin embargo, no está de más aclarar este concepto y explicar por qué motivo parte de la literatura sobre electricidad y electrónica dice una cosa y parte dice otra muy distinta. ¿Te interesa?. Pasa adentro, por favor.

Leer más...
Noticias
TEMPORIZADOR PARA VARIOS AÑOS

Como conectar un dispositivo hasta a varios años vista

Hoy queremos presentarte algo que se sale de lo normal, no solo por lo poco habitual que resulta encontrar algo así, sino también por la manera de conseguirlo.

Efectivamente, con el temporizador que te presentamos se puede hacer que un dispositivo se conecte a la red eléctrica hasta varios años después de haberse programado.

Y lo más sorprendente es que estos temporizadores pueden llevarse a cabo mediante simples relojes horarios de los usados normalmente para temporizar el encendido diario de luminosos, máquinas de café, etc... y sin ninguna complejidad, pues hasta un niño podría hacerlo.

No esperes más y clica en LEER COMPLETO...

Leer más...

Oscilador de laboratorio hasta 200 MHz

Para un radioaficionado es importantísimo saber usar y manipular los circuitos resonantes. Conocer a que frecuencia oscila uno de estos circuitos es, la mayoría de las veces, uno de los problemas mas habituales con los que tiene que enfrentarse el experimentador.

No obstante, en muchas ocasiones no se dispone del instrumental adecuado para realizar una medida de este tipo. Aunque es posible que dispongamos de un frecuencímetro, en la mayoría de las ocasiones no es suficiente, ya que es probable que no tengamos los medios para hacer oscilar al circuito tanque en cuestión.

Por esta razón, traemos a nuestro blog un pequeño dispositivo con el que podremos realizar esta medida con total seguridad y fiabilidad, además de ser útil para otros menesteres. Básicamente se trata de un oscilador al que únicamente le falta el circuito resonante objeto de nuestra medición. Dicho oscilador se acompaña de la circuitería necesaria para poder usarlo con nuestro frecuencímetro sin que el acoplamiento de este último afecte lo más mínimo a su frecuencia de resonancia. Y lo mejor de todo es que este circuito puede hacer oscilar "casi cualquier cosa que tenga espiras".

El montaje se lleva a cabo con solo seis transistores, uno de ellos el conocido JFET de canal "N" tipo BF-245, de muy fácil localización en el mercado, e incorpora técnicas para estabilizar la amplitud de la señal producida dentro de unos márgenes razonables, pudiendo llegar a oscilar hasta casi los 200 MHz.

Para no complicar mucho la construcción del oscilador se ha implementado una configuración muy sencilla en base a dos transistores montados como pseudo-multivibrador, al cual solo le hace falta el circuito resonante necesario para comenzar a funcionar. El esquema es el que mostramos a continuación. Puedes hacer clic en él para abrirlo en una nueva ventana y verlo con más comodidad.

Como puedes apreciar, no se trata de un circuito demasiado complicado. La señal del oscilador se toma del propio circuito resonante y se aplica a la puerta del JFET BF-245, el cual no lo cargará en absoluto en base a su altísima impedancia de entrada, por lo que este acoplamiento no modificará la frecuencia del oscilador.

Después de la amplificación introducida por el JFET la señal ha adquirido cierta amplitud, pero aún no es suficiente para el uso que nos hemos propuesto. Por eso tomaremos dicha señal del drenador del BF-245 y la aplicaremos a la base del transistor T5 (BF-199) montado en configuración de emisor común. La amplificación introducida por este último hace que nuestra señal tenga ya la amplitud adecuada para utilizarla según nuestros propósitos.

Posteriormente, del colector de T5 tomaremos la señal y la aplicaremos a la base de T6 (otro BF-199) el cual en este caso está montado como seguidor de emisor o colector común, y aunque prácticamente no amplifica si que consigue una baja impedancia de salida y una total independencia de la señal de entrada. La salida de este transistor se aplicará directamente a nuestro frecuencímetro.

Se ha incorporado al circuito una especie de control automático de nivel mediante el transistor T3 (BC-557) para estabilizar la amplitud de la señal de salida e intentar que ésta fluctúe lo menos posible dentro del margen de frecuencias en el que opera el oscilador. Para realizar este trabajo, mediante el condensador C5 (330KpF) y la resistencia R3 (1KΩ) se toma parte de la señal amplificada por T5 y se rectifica mediante los diodos D1 y D2 (ambos del tipo 1N4148).

La tensión continua así obtenida sirve para controlar la polarización del transistor T3, de manera que mediante él se modificará la tensión de alimentación aplicada al oscilador formado por T1 y T2, aumentando ésta cuando la amplitud de la señal disminuya, y bajándola cuando la amplitud de la señal aumente.

Debemos hacer notar que este circuito no funcionará conectándole solo una bobina, siendo necesario SIEMPRE colocar un condensador en paralelo con ella, formandose así el circuito tanque correspondiente que hará arrancar al oscilador.

También debemos indicar que el circuito ha de alimentarse con una tensión estabilizada de 12 voltios si se desea obtener una estabilidad de frecuencia elevada. Si se utiliza un alimentador no estabilizado se correrá el riesgo de que nuestro oscilador no disfrute de esa ansiada virtud.

En el esquema anterior proponemos un sencillo circuito para obtener los 12 voltios estabilizados necesarios para alimentar nuestro oscilador. El alma del alimentador lo constituye un simple regulador de tensión positiva de 12 voltios tipo 7812, completandose el montaje con todos sus componentes asociados. Puedes hacer clic en él para verlo con más comodidad.

Nos gustaría resaltar que este circuito oscilador tiene una infinidad de utilidades además de la que ya hemos dejado entrever. Con él no solo podremos comprobar los transformadores de F.I. de receptores en 455 KHz y por supuesto también los de 10,7 MHz, sino también obtener una señal de alguna de estas frecuencias para el ajuste de receptores.

Efectivamente, conectando un transformador de F.I. al oscilador se podrá comprobar, al girar su núcleo de ferrita, las frecuencias máxima y mínima a las que es capaz de ajustarse, frecuencias que podremos leer en el frecuencímetro conectado a nuestro oscilador.

Nuestro circuito, al poder funcionar dentro de un gran ancho de banda, también puede ser útil si necesitamos una señal de B.F., ya que si conectamos a su entrada una inductancia suficientemente elevada, conjuntamente con un condensador de una capacidad apropiada, podremos obtener una señal para ajustar filtros de audio, por ejemplo.

También tendremos la posibilidad de medir la capacidad de un condensador si lo conectamos a una inductancia de la cual conocemos su valor, y viceversa, medir la inductancia de una bobina conociendo el valor del condensador conectado a ella en paralelo. En fin, como puedes ver las posibilidades son ilimitadas.

A la hora de hacer el montaje procura que las conexiones sean lo más cortas posibles. De esta manera la frecuencia máxima de utilización del oscilador será la más alta posible. Si descuidas este punto es posible que el oscilador no consiga funcionar en frecuencias altas.

Si no dispones de frecuencímetro, aún podrás usar este oscilador como un perfecto generador de señal de alta y baja frecuencia. Para ello, en vez de usar un condensador fijo en el circuito oscilante, usa un condensador variable que te permita un margen de frecuencias determinado según tus necesidades.

Puedes bajarte el diseño de la placa de circuito impreso adecuado para este montaje, así como la distribución de componentes, de la zona de descargas de nuestra web.

 
C O M E N T A R I O S   
Probar ancho de banda de osciloscopios con cristal

#7 Thomas Hoffmann » 19-12-2020 02:06

Disculpen en mi anterior comentario olvidé preguntar si en vez del circuito resonante se puede poner un cristal de cuarzo de 100Mhz. Denuevo gracias.

Probar ancho de banda de osciloscopios

#6 Thomas Hoffmann » 19-12-2020 01:38

Llevo tiempo buscando una oscilacion de aproximadamente 100 Mhz ,he hecho varios circuitos y ninguno de ellos consiguio pasar de 17 Mhz, he adquirido toda clase de componentes para hacerlo, inductancias, cristales de cuarzo, etc y estoy a punto de perder la paciencia pero no de desistir, Tratare de hacer el esquema que muestran aqui, y ojalá me funcione, le estatria eternamente agradecido. Muchisimas gracias por la informacion.

CONSULTA

#5 P. Alejandro » 11-09-2019 16:00

MUY BUEN CIRCUITO! Lo voy a armar! Una consulta, los capacitores que tienen la letra "K" (100K) que significan? 100.000 pf?

RE: Saludos

#4 Ernesto Hernández » 24-05-2018 20:19

:pns: Alguien ha construido este circuito de manera práctica? Funciona? Qué tan pura es la onda generada a una frecuencia de 150MHz?

Saludos

#3 Pablo Granda » 25-10-2017 17:43

hola una consulta que simulador usa para realizar la simulación del circuito

Re:oscilador de laboratorio

#2 jose » 26-01-2015 01:53

Excelente trabajo. Voy a armar el circuito y lo probare hasta maxima frecuencia. Gracias!

RE: Oscilador de laboratorio hasta 200 MHz

#1 julio cesar » 27-10-2014 18:26

ES FANTASTICO ESA LABOR. :lol:

NO ESTÁS AUTORIZADO PARA COMENTAR
Por favor, regístrate e identifícate en el sistema. Gracias.

Close