Acceso



Registro de usuarios
Contáctenos
Teoría
El receptor elemental (IV)

Tenemos nuestro receptor elemental casi terminado. Con lo desacrrollado hasta ahora ya podemos oir emisoras suficientemente cercanas y potentes, pero necesitamos más. Necesitamos ganar algo de sensibilidad además de poder "seleccionar" la emisora que queramos escuchar y desechar las que no nos interesen. Esa es precisamente la función que debe realizar el selector. Gracias a este circuito podremos seleccionar la emisora que deseemos, sintonizando la frecuencia de su señal.

Para conseguir diferenciar y seleccionar una señal de RF de entre las demás hemos de recurrir al llamado "circuito resonante paralelo", compuesto por una bobina y un condensador conectados como podemos ver en la figura. Ya sabemos lo que es y como actúa básicamente un solenoide o bobina, pero aún no hemos dicho nada de los condensadores. Su estudio es completamente necesario para entender el funcionamiento del selector, aunque su participación en los circuitos electrónicos no se limita solo a esta faceta.

Al ser uno de los componentes electrónicos mas empleados, sobre todo en circuitos de radio, necesitamos imperiosamente conocer como funcionan, aunque solo sea superficialmente. Una vez que tengamos claro este punto podremos acometer el estudio de los circuitos resonantes, pieza clave del selector.

Leer más...
Otros Temas Interesantes
Noticias
AFHA - Curso Electrónica, Radio y TV - Tomo 6

Tomo 6 del curso de Electrónica, Radio y Televisión de AFHA.

En este tomo se habla de modulación de amplitud y modulación de frecuencia, un sencillo emisor de FM, receptor elemental de FM, el discriminador, interferencias, ruidos, banda estrecha, banda ancha, limitadores, detectores de FM, detector de relación, receptores mixtos AM-FM, desacentuación, amplificadores de FI para FM, sintonizador típico de FM, indicador de sintonía, antenas para FM, el dipolo simple, dipolo doble plegado, linea de transmisión, antenas interiores, etc...

Leer más...
Radioaficionados
Protección contra inversiones de polaridad

Una de las averías más comunes que nos podemos encontrar en las emisoras de radioaficionado es la inversión de polaridad. Dicha avería se produce al conectar el equipo inadvertidamente a la alimentación con las conexiones al revés, el cable de la entrada positiva (rojo) al electrodo negativo de la batería y el cable de la entrada negativa (negro) al electrodo positivo. Hay radioaficionados que, a pesar de las advertencias por parte del servicio técnico y para ahorrarse unos euros, conectan la emisora a una sola de las baterías (12V) de un vehículo dotado de dos unidades en serie (24V), en vez de utilizar la solución más apropiada que es un reductor de tensión de 24 a 12 voltios. Esto es una fuente constante de problemas tanto para la emisora como para las propias baterias del vehículo y puede propiciar una inversión de polaridad cuando alguien manipula dichas baterias sin desconectar previamente la emisora.

En este artículo vamos a estudiar los sistemas de protección contra inversiones de polaridad de que disponen tanto las emisoras de radioaficionado como muchos otros aparatos electrónicos, entre ellos los ordenadores portátiles por ejemplo, para evitar que el equipo en cuestión resulte dañado (o por lo menos reducir en lo posible el daño) ante un percance de este tipo, y su reparación práctica tomando como ejemplo una conocida emisora de radioaficionado averiada por esta causa. ¿Te interesa?.

Leer más...
Miscelanea
La circunferencia, el círculo y el número PI (π)

La mayor parte de las personas que vivimos en paises desarrollados, quizás porque estamos acostumbrados a obtenerlo todo con suma facilidad y/o que las cosas vengan a nosotros como caídas del cielo, a menudo las damos por sentadas de manera automática.

Practicamente en ningún momento nos preguntamos porqué algo es o se produce de una determinada manera. Nos basta con saber que tal o cual cosa es como es y punto, lo aceptamos sin reservas.

Algo así nos ha ocurrido a muchos cuando asistíamos a la escuela, en épocas pasadas. ¿Recuerdas cuando aprendiste la fórmula para hallar la longitud de la circunferencia?. ¿O cuando te enseñaron la fórmula para calcular la superficie del círculo?. Todos las aceptamos sin pestañear, y pocos fuimos los que nos preguntamos de donde habia salido el famoso número PI (π). Muchos daban por sentado que aquello era así porque lo decía nuestro profesor de matemáticas y se acabó.

Pero en realidad, esas conocidas fórmulas han salido de algún sitio o, mejor dicho, han sido promulgadas por una o varias personas después de haber dedicado mucho tiempo y esfuerzo al estudio de estas figuras geométricas.

¿Te gustaría saber más sobre este tema y conocer como se han llegado a obtener las mencionadas fórmulas y como están relacionadas entre ellas?... ¡Pues clica en "Leer completo..." ya!.

Leer más...
Práctica
Microfono inalámbrico en FM "mini"

Con solo cuatro resistencias, unos pocos condensadores, un transistor y una pila vamos a construir un micrófono inalámbrico en FM de muy reducidas dimensiones.

Somos conscientes de la gran diversidad de circuitos de este tipo que circulan por la red. Sin embargo, muchos de ellos no están suficientemente detallados y a la hora de llevarlos a la práctica son problemáticos. Otros no tienen diseñada la correspondiente placa de circuito impreso, por lo que su montaje resulta bastante fastidioso.

Con nuestro circuito hemos querido llenar el hueco que creemos que falta en este ámbito; conseguir un micrófono inalámbrico en FM sencillo, eficaz, casi miniatura, fácil de implementar y con todos los datos pormenorizados necesarios para poder llevarlo a cabo sin problemas.

La información que corresponde a este artículo se la podrán bajar en formato PDF todos nuestros visitantes, registrados y no registrados, ya que se colgará en la sección de descargas gratis. Agradeceremos mucho su colaboración si hacen comentarios con sus experiencias al respecto.

¿Os apuntais a este reto?

Leer más...
Teoría
Las ondas (V)

Llegamos al último artículo relativo a las ondas. A través de los cuatro artículos anteriores hemos visto más o menos profundamente su naturaleza. Con lo estudiado hasta el momento ya tenemos suficiente conocimiento para continuar adelante, sin embargo vamos a seguir hablando un poco a lo largo de este artículo sobre algunas de las peculiaridades especiales de las ondas y también de algunas de sus aplicaciones prácticas, lo que ampliará nuestro entendimiento sobre este tema tan interesante.

Además vamos a explicar el significado de algunas expresiones comunes en radio, que quizás antes de leer este artículo no tenías claras en tu mente y que sin embargo las oímos todos los dias. Es posible que te sorprenda lo que vas a leer a continuación, o quizás no, pero en cualquier caso vamos a intentar que la lectura sea amena, agradable y entretenida.

Cuando acabes de leer estas páginas puedes dejar tu comentario, si lo deseas, y decirnos que te ha parecido ¿te agrada la idea?. Pues adelante.

Leer más...
Noticias
Revista 27 MHz - Fascículo 8

Fascículo Nº 8 de la revista "27 MHz" dedicada a la CB (Banda Ciudadana).

Leer más...

Las válvulas de vacío III

Para continuar con los artículos relativos a las válvulas de vacío, iniciaremos este último hablando sobre un par de aplicaciones que en su dia tuvieron los diodos termoiónicos, aplicaciones relacionadas por supuesto con la radio.

Posteriormente, en el siguiente artículo, continuaremos repasando un poco el principio físico por el que se rige el funcionamiento de otra válvula termoiónica, el triodo, para acabar mencionando el protagonismo que años atrás tuvieron algunas otras válvulas de más electrodos.

Artículos cortos particularmente desde nuestro punto de vista, no en extensión pero sí en desarrollo, ya que existe mucha tela que cortar en este aspecto. Sin embargo, los reduciremos a la mínima expresión posible dada la actual inexistencia de circuitería práctica que incluya este tipo de componentes electrónicos. Pasa dentro, por favor ...

El diodo termoiónico se utilizó en los radioreceptores básicamente como demodulador y como rectificador en las fuentes de alimentación. Si quieres ver una imagen ampliada del detalle de construcción de una de estas válvulas puedes hacer click aquí y se abrirá una nueva ventana con un gráfico que podrás visualizar con mayor comodidad.

RENDIMIENTO FUNCIONAL
Tenemos que decir en este punto que técnicamente el funcionamiento del diodo termoiónico se aproxima más a la perfección que el del diodo semiconductor. ¿Te preguntas la razón de esta última afirmación?.

Si miramos únicamente la faceta que atañe a la señal que tenemos entre manos, y no al consumo energético, nos daremos cuenta de algo muy importante. Cuando se le aplica al diodo semiconductor una d.d.p. con polaridad inversa, prácticamente no deja circular corriente alguna.

Observa que en el párrafo anterior hemos usado el término "prácticamente", y con él hemos querido expresar que, aunque esta corriente inversa es ínfima, existe y circula a su través, de forma que es perfectamente evaluable.

Esto no le ocurre al diodo termoiónico de vacío. Si a este último lo polarizamos de manera inversa no circulará absolutamente ninguna corriente por su interior ya que, al ser la placa negativa con respecto al cátodo, no se cumplen las necesarias condiciones para que pueda existir siquiera esa pequeña corriente que si podemos detectar en el componente semiconductor.

La placa del diodo de vacío no solo no está caldeada, sino que además no está fabricada de un material que sea propenso a la ionización, como si que ocurre con el cátodo el cuál está revestido con óxidos metálicos que tienden a producir este efecto en cuando recibe el calor suficiente.

Por estas razones, el diodo de vacío no conduce en absoluto cuando recibe una d.d.p. con polaridad inversa. Podemos decir que electrónicamente, y no energéticamente, el diodo de vacío tiene un rendimiento superior al de cristal o semiconductor.

Sin embargo, esta no ha sido razón suficiente para que nuestro "viejo héroe" haya perdurado hasta nuestros dias, ya que el gasto energético que acarrea el caldeo del cátodo ha hecho que se le condene de por vida a un desuso y olvido permanente.

EL DIODO DE VACIO COMO DEMODULADOR
¿Recuerdas nuestro receptor elemental con diodo de cristal semiconductor?... ¡Efectivamente!... el llamado radio galena. Pues bien, en dicho circuito podemos sustituir el diodo semiconductor por un diodo temoiónico de vacío y nuestro aparato de radio seguirá funcionando a las mil maravillas.

Fíjate bien en la siguiente ilustración en la que, con relación a un receptor de galena con diodo de cristal semiconductor, solo se ha cambiado dicho diodo de cristal por uno temoiónico.

Lógicamente se ha necesitado una fuente de alimentación, imprescindible para el caldeo de su filamento, pero su funcionamiento sería más que excelente, incluso mejor que el de su homónimo semiconductor por las razones que ya hemos apuntado.

EL DIODO DE VACIO COMO RECTIFICADOR
En la mayoría de los receptores a válvulas era necesaria la colaboración de la llamada fuente de alimentación. Normalmente, las válvulas termoiónicas necesitan en sus placas una tensión positiva de cierta magnitud para poder realizar su función correctamente. Y hemos dicho "normalmente" porque, como acabas de ver, en el ejemplo anterior de un receptor con diodo termoiónico no hemos usado ninguna fuente de alimentación, a excepción de la necesaria para el caldeo de su filamento.

No obstante, hemos de decir que este tipo de receptor, como ya sabemos, utiliza únicamente la propia energía de la señal de R.F. recibida por la antena. Puede decirse que en este circuito, el diodo tiene un comportamiento relativamente pasivo.

Sin embargo, en receptores con una circuitería más elaborada en la que intervienen válvulas triodos y pentodos, a las cuales se les encomendaban funciones especializadas como amplificadoras, osciladoras o mezcladoras, era absolutamente necesario el concurso de una o varias tensiones continuas de polarización de varias decenas de voltios. Para conseguir esta fuente de tensión contínua, a partir de la alterna de la red eléctrica, eran utilizados los diodos entre otros componentes electrónicos.

Existían varios tipos de fuentes de alimentación con diodos de vacío. La más sencilla era la que incorporaba un solo diodo como rectificador de media onda. Puedes ver el esquema en la ilustración de arriba.

Un transformador conectado a la red suministraba en su secundario una tensión senoidal de la amplitud apropiada al circuito que debía alimentar. El diodo de vacío rectificaba dicha onda senoidal, dejándola solo con los semiciclos positivos. Así se lograba obtener una tensión continua, de un solo sentido, aunque en forma de pulsos.

No obstante esto no servía para cumplir el propósito para el que fué pensada la fuente de alimentación, no bastaba. Lo que se necesitaba no eran pulsos sino una tensión contínua lo más pura posible, con el mínimo rizado e imperfecciones, y a partir de ella alimentar las placas de las demás válvulas.

Para conseguir lo anterior se usaba un filtro a base de uno o dos condensadores de una capacidad elevada.

Este condensador se encargaba de "aplanar" la semi-senoide rellenando sus huecos, dejándola casi sin rizado al cargarse con la tensión de pico de los pulsos y cediendo dicha carga durante el tiempo en el que esos pulsos no existían, logrando que la tensión pulsante se convirtiera en una tensión continua casi uniforme (ver los artículos dedicados a los condensadores I, II y III).

Para que lo podáis entender, y aplicando un símil hidráulico, es como si tuviéramos en el tejado de casa un depósito que se llenara de forma automática de la red de distribución de agua de nuestra ciudad. Desde el momento en que la empresa de distribución corte el agua en la zona donde vivimos, dispondremos en nuestro depósito de cierta cantidad del líquido elemento, el cual suplirá al de la red durante un período de tiempo determinado por la magnitud de nuestro propio consumo.

Si el agua de la red de distribución nos llega de nuevo antes de que se nos acabe la que tenemos almacenada en nuestro depósito, no notaremos nada en absoluto. El agua no nos faltará y disfrutaremos de ella exactamente igual como si la empresa de distribución no la hubiera cortado nunca. La función del condensador de filtro de la fuente de alimentación es muy similar a la que tiene el depósito de agua. Lo entiendes... ¿verdad?.

Sin embargo. este tipo de fuente de alimentación adolecía de algún que otro inconveniente, sobre todo desencadenados cuando el consumo del equipo conectado a ella era alto.

Frente a un consumo relativamente elevado, el rizado de la onda rectificada hacía su aparición al no poder el condensador atender la demanda de corriente que se le requería, descargándose antes de que llegara el siguiente pulso, lo que producía un zumbido en el altavoz del receptor, que a veces podía llegar a ser importante y muy molesto.

Es como si, volviendo al símil hidráulico, nuestro consumo de agua fuera muy elevado. Entonces el depósito se vaciará antes de tiempo, y nos quedaremos sin agua hasta que la empresa distribuidora nos abastezca de nuevo.

La solución no pasaba por aumentar de forma desmesurada la capacidad del condensador, ya que estos eran caros, voluminosos y además se corría el riesgo de dañar el diodo en el momento de conectar el equipo o hacer saltar el fusible de protección del sistema. Recordemos que un condensador de gran capacidad se comporta durante los primeros instantes de su carga como un verdadero cortocircuito.

Para paliar el problema, se acudía con relativa frecuencia a "acortar" la distancia que separaban los pulsos rectificados por el diodo para que el condensador tuviera "menos trabajo". El razonamiento es el siguiente; si la distancia en el tiempo entre dos pulsos consecutivos fuera la mitad, el condensador podría realizar su cometido en mejores condiciones ya que, valga la expresión, no tendría tanto hueco que rellenar.

De esta manera podrían usarse condensadores de una capacidad más moderada, al no tener que mantener su carga durante todo el tiempo en que lo hacían en el circuito anterior.

Cuanto más cerca estuvieran los pulsos entre sí, más fácil le resultaría al condensador "aguantar" la tensión de pico recibida del pulso anterior, ya que la "ayuda" del siguiente pulso llegaría en menos tiempo... ¿Entendido?. La pregunta es... ¿Que diablos podemos hacer para que los pulsos estén mas cerca unos de otros?.

Para conseguirlo, se echaba mano del llamado "rectificador de onda completa", el cual aprovechaba tanto los pulsos positivos como los negativos de la onda senoidal presente en el secundario del transformador. Se necesitaban dos diodos, y no solo uno, para llevarlo a cabo, además de un transformador con toma intermedia. El circuito de que hablamos puedes verlo en la ilustración superior.

Los filamentos de las válvulas, aunque se han representado fuera de ellas, siguen estando dentro. Esto se suele hacer para aclarar un poco el esquema y evitar un cruce de lineas innecesario.

En cada semiciclo de la onda alterna presente en el secundario del transformador conduce uno de los diodos y se bloquea el otro, de manera que en cualquiera de los dos semiciclos de la alternancia siempre existe un diodo conduciendo y otro bloqueado.

En realidad, gran parte de los diodos termoiónicos se fabricaban encapsulados por pares, tanto los destinados a la rectificación en fuentes de alimentación, como los que se montaban como demoduladores. En este último caso, uno de los diodos se usaba para demodular la señal de RF y el otro para obtener la tensión del llamado C.A.V. (Control Automático de Volumen), modernamente C.A.G. (Control Automático de Ganancia) o C.A.S. (Control Automático de Sensibilidad).

En el caso que nos ocupa de un doble diodo rectificador, en una misma válvula se introducían dos diodos casi completos. Y decimos "casi completos" porque, aunque dicha válvula tenía dos placas diferentes (una para cada diodo), solo existía un cátodo compartido y común para ambos diodos. Esto era más que suficiente para montar una fuente de alimentación con rectificación de onda completa, como puedes ver en el dibujo.

Observa que en el circuito con dos diodos completos, los cátodos trabajan unidos, por lo que no había ningún inconveniente técnico para que estuvieran unidos en el mismo interior de la válvula. Además, fabricando los diodos así solo tenía que alimentarse un filamento y no dos, con lo que se había conseguido un ahorro energético.

El funcionamiento del circuito es muy simple pero, aunque ya hemos adelantado algo, lo estudiaremos a fondo un poco más adelante, cuando toquemos las fuentes de alimentación con diodos semiconductores. Debes saber y tener presente que el principio teórico de esta fuente de alimentación es el mismo tanto si se construye con diodos termoiónicos como si se hace con diodos semiconductores, por lo que estudiarlo con unos o con otros no cambiará absolutamente nada.

Sabemos que se han quedado muchas cosas en el tintero, pero el objetivo era solo hacer un repaso superficial y es lo que hemos hecho. Ahora haremos un alto en el camino, para continuar hablando de las válvulas de más electrodos en nuestro próximo artículo. Hasta entonces.

 

NO ESTÁS AUTORIZADO PARA COMENTAR
Por favor, regístrate e identifícate en el sistema. Gracias.