Acceso



Registro de usuarios
Contáctenos
Teoría
Protección contra sobretensiones

Todo aquel que ha estado reparando equipos de radio durante cierto tiempo sabe que en multitud de ocasiones llegan al SAT los clásicos "cadáveres" que han sufrido una sobretensión.

Normalmente, la gran mayoría de estos equipos vienen protegidos de origen contra inversiones de polaridad, siempre que se le respete el valor al fusible... ¡claro!, pero no todos vienen con una protección contra sobretensiones.

Para aclararle el significado del término a aquellos que no sepan que significa "sobretensión", se trata de aplicarle a la emisora una tensión de polaridad correcta pero bastante más elevada que la nominal. Por ejemplo, "meterle" los 24 voltios de las dos baterías de un camión en vez de los 12 o 13 voltios necesarios.

Y antes dije cadáveres (entre comillas) porque, para desgracia para su dueño, cuando acontece esta vicisitud provoca un verdadero desastre en el aparato; etapas de potencia de audio, finales y drivers de RF, reguladores, etc... Generalmente la sobretensión arrasa con todo, incluida la billetera de su propietario.

Parece mentira pero, como en muchas otras situaciones de la vida, los accidentes más graves podrían reducirse a cero con un costo mínimo y con algo más de previsión.

Si deseas saber como prevenir una sobretensión en tu equipo de radio, de una manera muy simple, lee el resto de este artículo.

Leer más...
Otros Temas Interesantes
Noticias
Curso de ELECTRÓNICA BÁSICA 10

¿Como se usan las RESISTENCIAS?
(2ª parte)

Te presentamos la segunda parte del interesante tema de las resistencias en los circuitos electrónicos.

En este video profundizamos más y te hablamos de nuevos conceptos, necesarios para entender circuitos más complicados.

Haz clic en LEER COMPLETO para avanzar y mejorar tus conocimientos...

Leer más...
Radioaficionados
Receptor a reacción para Onda Corta (I)

El principio de la reacción fue ampliamente utilizado por los radioaficionados en los albores de la radio, cuando aún los transistores no habian hecho su aparición en el escenario electrónico.

Los primeros receptores a reacción con válvulas de vacío tuvieron tal aceptación que fueron los preferidos durante muchos años por aquellos que no disponían de la capacidad económica para adquirir un equipo comercial, o bien no tenían los conocimientos técnicos necesarios para la construcción y ajuste de un receptor superheterodino, bastante más complejo de llevar a la práctica y de poner a punto.

Efectivamente, la construcción de un receptor regenerativo, como también suele llamársele, no es nada dificultosa y, por si fuera poco, prácticamente no requiere de ningún ajuste complicado. Además, y para seguir añadiéndole ventajas, los resultados que con él pueden obtenerse casi nunca defraudan. Con solo unos pocos componentes su sensibilidad puede llegar a ser extraordinaria, acercándose mucho a los receptores más sofisticados.

Y para seguir contándote ventajas te diremos que ahora es más fácil que nunca construir uno de estos equipos, ya que afortunadamente podemos usar transistores modernos en lugar de válvulas termoiónicas, sin necesidad de acudir a las altas tensiones de alimentación necesarias para estas últimas. Con solo una pila y algunos componentes más podremos disfrutar de nuestro receptor de Onda Corta en un plis-plas. ¿Te apuntas?.

Leer más...
Miscelanea
Sencillo VU-Meter a diodos LED

Lejos quedan aquellos tiempos en los que todos los medidores, y al decir todos me refiero a TODOS, estaban construidos mediante un galvanómetro y la lectura se realizaba con una aguja que parecía deslizarse al recorrer una escala graduada.

A decir verdad, para aquellos que en cierta manera somos de "la vieja escuela", los referidos medidores, midieran lo que midieran, tenían un encanto muy especial y podría decirse que sentimos "morriña" cuando los recordamos, como diría un gallego al estar lejos de su tierra y escuchar el sonido de una gaita.

Pero llegaron los diodos LED y se hizo la luz. Desde entonces, son muchos y muy variados los VU-Meters, vúmetros o medidores de unidades "VU" (del inglés Volume Unit) que se han desarrollado incorporando este componente electrónico, sobre todo usando la tecnología de la integración.

Pero en este artículo no vamos a publicar la información técnica para construir uno de estos instrumentos con los clásicos circuitos integrados UAA170 o UAA180 ni con cualquier otro. Tampoco vamos a enseñarte a conectar esas "barritas" LED con diferentes diseños. ¡Con ellas practicamente lo tienes todo hecho!.

En este artículo vamos a enseñarte como construir un VU-Meter LED con componentes discretos. ¡Dale ya al "Leer completo..." para saber más!.

Leer más...
Práctica
Detector de polaridad

Uno de los mayores errores que se cometen al enchufar equipos electrónicos a baterías o a fuentes de alimentación de corriente continua es la inversión de polaridad. ¿Te ha ocurrido esto a ti alguna vez al instalar una emisora de radioaficionado en tu automóvil y conectarla a su circuito eléctrico?.

Cuando se da esta circunstancia uno se pregunta... "¿como me ha podido pasar a mi?. No es posible, estoy viviendo un mal sueño, una pesadilla. Yo siempre voy con muchísimo cuidado. Pronto despertaré...". Pero no. Por desgracia no se trata de un sueño sino de una situación real. Has cometido el error más frecuente cuando se manejan equipos electrónicos con alimentación continua exterior; la temida inversión de polaridad.

Para que esto no te vuelva a pasar vamos a enseñarte a construir un sencillo aparato con el que podrás detectar muy facilmente la polaridad de una tensión continua desde 2 hasta 230 voltios aproximadamente. También te indicará, caso de que no se trate de una tensión continua, si dicha tensión es alterna.

Mediante unos diodos LED bicolor este tester te marcará, sin ninguna posibilidad de error, cual es el polo positivo y cual el negativo de una determinada toma de corriente eléctrica o si por contra se trata de una tensión alterna. ¿Te interesa?. Sigue leyendo, por favor...

Leer más...
Teoría
Telecomunicaciones - El telégrafo

Desde tiempos inmemoriales el hombre ha intentado comunicarse con sus semejantes a través de la distancia. Desde tiempos muy remotos esa ha sido una obsesión para el ser humano. El poder hacerle llegar un mensaje instantaneo a un ser querido a cientos o a miles de kilómetros era, hasta hace relativamente pocos años, una verdadera utopía.

El sonido y la luz han sido ampliamente utilizados a lo largo de la historia de la humanidad como soporte para los mensajes a transmitir. Sin embargo, ambos adolecen de problemas insalvables debido a su propia naturaleza. En el caso del sonido al tratarse de ondas mecánicas de muy corto alcance como ya hemos estudiado, y en el caso de la luz, aunque se trata de una onda electromagnética, es por contra de trayectoria rectilinea y, además, frenada en seco cuando se encuentra con un obstáculo opaco, lo que en ambos casos hacen imposible su utilización para estos menesteres.

La realidad ha sido que solo usando señales basadas en la electricidad, señales eléctricas, se han conseguido resultados adecuados a lo que se buscaba. ¿Te interesaría conocer como se desarrolló este asunto desde el principio, y de paso ahondar en el funcionamiento de los artilugios que se usaron en su desarrollo? Todo en este artículo.

Leer más...
Noticias
Hazte "PREMIUM" por un AÑO por solo 10 €

¿Conoces nuestro canal de Youtube?

Nuestro canal en Youtube, al que puedes acceder mediante el link https://www.youtube.com/@Radioelectronica-Spain, a fecha de hoy ya ha superado los 45.000 seguidores en todo el mundo. No son muchos, es verdad, y tampoco pretendemos presumir de ello. Sin embargo, si que son muchos los comentarios y correos electrónicos que recibimos con preguntas y dudas que surgen a raíz de ver los videos publicados.

Nuestro "Curso de electrónica básica" ha tenido una muy buena aceptación entre los usuarios. Hasta el momento estamos ofreciendo siete capítulos, y aunque en los mismos se toca lo más elemental de la electrónica y sin habernos metido aún en mucha hondura, todos los días recibimos correos electrónicos pidiéndonos que le despejemos una duda o que le aclaremos un punto determinado relativo al tema tratado.

Te comunicamos que tenemos muy buenas noticias para todas las personas interesadas.

Clica en LEER COMPLETO para saber todo lo que te podemos ofrecer sobre este asunto.

Leer más...

Las ondas (I)

Por lo evidente, no nos extraña nada en absoluto la percepción que a diario tenemos en nuestros oidos de aquellos sonidos que se producen en algún punto más o menos alejado de nosotros. Si tenemos en cuenta que el espacio que nos rodea está lleno de aire, es fácil deducir que el sonido tiene la propiedad de desplazarse a través de dicho medio. Sin embargo, a pesar de que los sonidos producidos sean de una magnitud elevada, la distancia que pueden recorrer es relativamente escasa, a lo sumo de algunas centenas de metros, o, en el caso de los más estruendosos y atronadores, varios kilómetros de distancia.

Como vemos, la distancia que podemos alcanzar transmitiendo un sonido como tal es francamente corta y además depende excesivamente de las condiciones atmosféricas que nos rodeen en el momento de producirlo. Es más, si lo que nos interesa es hacer llegar lejos el habla de una persona, a cientos o a miles de kilómetros, lo tenemos muy difícil si pensamos transmitirla en su forma natural, es decir, como un sonido. Si queremos prolongar de forma considerable esta distancia deberemos hacerlo de otra manera. No obstante, para llegar a ese punto deberemos conocer primero que tenemos entre manos. ¿Qué es exactamente el sonido? ¿Como se produce? ¿Que son las ondas? ¿Existen diferentes tipos de ondas?. Si lees este artículo y los siguientes tus dudas desaparecerán.

La manera en que podemos producír los sonidos es muy variada. Por ejemplo, si tomamos como patrones los instrumentos musicales, tenemos algunos en los que utilizamos la percusión, en otros el viento, en otros utilizamos cuerdas tensadas, otros son de tipo electrónico y disponen de altavoces, etc... Sin embargo, sea cual sea el modo en que un sonido se produzca, todos ellos tienen algo en común que hace que puedan llegar a nuestros oidos, que podamos sentir su presencia y dar cuenta de ellos mediante nuestros tímpanos. Lee lo siguiente:

EL SONIDO ES EL RESULTADO DE UNA VIBRACIÓN QUE SE TRANSMITE POR MEDIO DE ONDAS A TRAVÉS DEL MEDIO EN EL QUE SE HA PRODUCIDO ORIGINALMENTE

La definición es clara y fácil de entender. Cuando se produce el sonido se crean las ondas sonoras que viajan a través del aire y al llegar a nuestros tímpanos los hacen vibrar, de manera que esta excitación llega a nuestro cerebro el cual la transforma fielmente y nos hace tener la sensación de lo que conocemos normalmente como un sonido de tal o cual naturaleza. Pero, la verdad, quizás para alguien que lee esto por primera vez no le resulte tan evidente la explicación y tenga ciertas dudas. Por ejemplo... ¿Que son exactamente esas "ondas" de las que hablamos? ¿Como logran "viajar" hasta llegar a nuestros oidos y agitar nuestros tímpanos?.

Comentaremos antes de empezar que el método mas antigüo y quizás el mas adecuado ideado por el hombre para transmitir los sonidos a larga distancia es la radio y, tal como los sonidos naturales, la radio también propaga sus señales mediante ondas que se transmiten a través del espacio, aunque estas son de naturaleza distinta a las ondas sonoras, de manera que el estudio de las ondas nos interesa por partida doble.

¿QUE SON LAS ONDAS?
Para empezar a desarrollar el tema de las ondas vamos antes que nada a dar su definición y a partir de ahí seguiremos adelante, ¿que te parece?. Podemos decir pués que:

LAS ONDAS SON EL RESULTADO DE LA ENERGÍA CONTENIDA EN UNA VIBRACIÓN

¿Que quiere decir esto exactamente? Para explicarlo nada mejor que un ejemplo y el más clásico es el del estanque de aguas tranquilas al que tiramos una piedra al centro del agua. Entonces vemos como se crean unas circunferencias concéntricas que parten del lugar donde la piedra ha caido y se desplazan hacia la orilla. En un principio podríamos pensar que existe un movimiento del agua hacia el exterior del estanque, pero nada más alejado de la realidad. Para convencernos de ello podemos colocar un trocito de corcho en un punto del agua cercano a donde cayó la piedra, a un metro por ejemplo. Entonces, si verdaderamente existiera un movimiento del agua hacia el exterior, el trocito de corcho se verá arrastrado, debido a su poco peso, en esa dirección y se alejará del punto donde lo dejamos caer. Pero esto no ocurre así. Lo que observamos es que nuestro trocito de corcho, lejos de desplazarse hacia el exterior del estanque, adquiere un movimiento vertical hacia arriba y abajo, siendo su movimiento horizontal hacia la orilla prácticamente nulo.

De lo anterior podemos deducir que la existencia de las ondas no significa que se cree un desplazamiento horizontal de las moléculas de agua hacia el exterior. Más bién lo que hay es una vibración que se transmite de molécula a molécula sin que necesariamente exista un desplazamiento horizontal de las mismas. Lo que se transmite y se propaga es el impulso vibratorio creado en un principio con la caida de la piedra al agua. Es energía en forma de vibración, en forma de ondas. Se dice que este tipo de ondas son transversales ya que se propagan en sentido horizontal, mientras que las oscilaciones que producen dichas ondas son verticales.

En el momento del choque de la piedra con el agua esta es obligada a desplazarse violentamente y se crea un vacío en la superficie del lago. Parte del agua que ocupaba esta cavidad asciende por encima del nivel que el lago tenía cuando estaba en reposo lo que hace que se forme una pared alrededor del punto donde ha caido la piedra, pared que supera en altura el nivel normal del agua del estanque. El agua que ha subido por encima del nivel de reposo del lago vuelve a caer y se coloca ahora por debajo del nivel de reposo, provocando con ello una nueva subida del agua circundante y una nueva pared, lo que significa otra nueva onda, que otra vez supera el nivel normal del agua. El proceso se repite mermando su intensidad progresivamente debido al peso del agua, y por lo tanto a la resistencia que esta opone para ser desplazada, llegando a anularse completamente la formación de estas ondas transversales.

ALGUNAS ILUSTRACIONES
Podremos llegar a entender mejor el desplazamiento vibratorio ilustrándolo mediante algunos ejemplos prácticos. Uno de ellos son las fichas de dominó en fila india que van cayendo una tras otra y van transmitiendo el impulso que le dimos a la primera sin prácticamente moverse de su sitio. Al final cae la última ficha de dominó, situada a varios metros de la primera, sin que haya habido un desplazamiento significativo de cada una de ellas individualmente. Hemos transmitido un impulso, o una energía, a cierta distancia sin que los componentes "transmisores" de dicho impulso se hayan movido de forma individual mas de lo necesario para hacer posible la propagación de dicho impulso.

Otro ejemplo. Pensemos en la fila de personas que se forma en la ventanilla de una caja de cualquier banco (por ejemplo). Supongamos que esta fila está compuesta por diez personas. La primera está siendo atendida en ventanilla y la última, la décima, está esperando pacientemente que las nueve que están delante de ella sean atendidas para que le toque su turno. Durante el tiempo en que la primera persona está siendo atendida en la ventanilla la fila está en reposo y no se mueve en absoluto (¡La mayoría de las personas se desesperan por la lentitud del cajero!). De repente alguien llega, es la persona que hace el numero 11, tropieza con algo y cae hacia delante. Para evitar la caida se apoya en la persona numero 10, la cual recibe un fuerte impulso, o empujón, que le hace caer hacia adelante. Para evitar la caida, la persona numero 10 se apoya en la persona numero 9 y la historia se repite. Al final el impulso inicial se transmite hasta la persona numero 3 o la 4 dependiendo de la potencia con que se inició el primero por la persona numero 11 recién llegada. Sin embargo, individualmente las personas prácticamente no se han movido de su posición original. Lo que se ha propagado ha sido el impulso, no las personas, las cuales han permanecido casi en el mismo sitio que ocupaban antes de producirse el primer empujón.

Otro ejemplo clásico es el del muelle, muy ilustrativo para representar las dos clases de ondas existentes en función del tipo de vibración que genera su desplazamiento (Dentro de un momento verás con claridad esto último). Este ejemplo es mejor que lo veas por tus propios ojos en el siguiente video.

Queda claro que las ondas no se crean por un desplazamiento de las moléculas del medio en que se producen sino que son consecuencia de la transmisión de una vibración de molécula a molécula. No se trata por lo tanto de un desplazamiento de moléculas en el mismo sentido en que se desplaza la onda, sino de la propagación de un impulso, de una vibración, de una energía vibratoria.

CAUSA Y EFECTO
Recapitulando y en resumidas cuentas hemos dejado claro como se produce la formación de ondas. Ahora estamos en condiciones de afirmar lo siguiente:

EL MOVIMIENTO VIBRATORIO DE UNAS PARTÍCULAS ES LA CAUSA DE QUE EXISTA EL MOVIMIENTO ONDULATORIO A TRAVÉS DE UN MEDIO COMO EL AGUA O EL AIRE

Expresado de otra manera, el movimiento ondulatorio (las ondas) es el efecto. La causa es el movimiento vibratorio. Después de esto podemos dar otra nueva definición para onda:

UNA ONDA ES LA ENERGÍA TRANSMITIDA EN FORMA DE VIBRACIÓN A TRAVÉS DE LAS PARTÍCULAS DE UN MEDIO DETERMINADO

Básicamente existen dos clases diferentes de ondas en lo que respecta al tipo de energía que manifiestan; las mecánicas que necesitan de un medio elástico para propagarse (ondas sonoras, ondas sísmicas, las ondas que se forman en el agua, etc...) y las electromagnéticas las cuales no necesitan ningún medio para propagarse y por lo tanto pueden hacerlo en el vacio absoluto (ondas luminosas, ondas de radio y televisión, rayos X, microondas, etc...).

Como ya hemos adelantado, existen dos clases de ondas en lo que respecta al tipo de vibración que genera su desplazamiento. Hemos dicho que las formadas por la piedra que cae al agua del estanque se llaman transversales ya que son creadas por vibraciones perpendiculares a la dirección de propagación de la onda (las vibraciones son verticales mientras que la propagación de la onda es horizontal). Puedes ver una animación de una onda transversal pulsando aquí.

Si la vibración que crea la onda es paralela a la propagación de la misma se trata de una onda longitudinal. Ejemplo de estas últimas son las ondas sonoras, las cuales se producen por las presiones y depresiones locales del medio en que se crean. En una primera aproximación podríamos imaginarnos la presión como moleculas de aire (si este es el medio en que se crean) que se juntan o aglutinan entre si, mientras que en el caso de la depresión estas moléculas se separan o se alejan unas de otras. Puedes ver una animación de una onda longitudinal pulsando aquí.

En nuestro próximo artículo seguiremos profundizando en el tema de las ondas y comprobaremos que tienen mucho que ver con las señales de radio. Hasta entonces.

 
C O M E N T A R I O S   
RE: Las ondas (I)

#1 cristina » 07-01-2019 19:13

muy didáctico el texto, era lo que buscaba

NO ESTÁS AUTORIZADO PARA COMENTAR
Por favor, regístrate e identifícate en el sistema. Gracias.

Close