Acceso



Registro de usuarios
Contáctenos
Teoría
El receptor elemental (III)

Queremos que este artículo cumpla una doble misión. Por un lado seguiremos ahondando en las partes componentes del receptor elemental para ir avanzando poco a poco hacia nuestro destino. Para ello, nos adentraremos en el estudio del diodo como detector y tocaremos los "detectores de galena" tan usados por nuestros abuelos hace años.

Por otro lado, queremos dejar claro algo referente al sentido de la corriente eléctrica, ya que existe cierta confusión al respecto. Muchos dicen que la corriente eléctrica circula desde el negativo hacia el positivo (eso es lo que enseñamos en esta web). Otros, no obstante, dicen que no, que la corriente va desde el positivo hacia el negativo ya que son muchos los tratados de electrónica que enseñan esto último. ¿Tu que crees?. ¿A que lado te inclinas?.

En honor a la verdad debemos decir que, en lo que al estudio de la electrónica se refiere y a excepción de ciertas parcelas determinadas, prácticamente no influye para nada que la corriente fluya en un sentido o en otro. Sin embargo, no está de más aclarar este concepto y explicar por qué motivo parte de la literatura sobre electricidad y electrónica dice una cosa y parte dice otra muy distinta. ¿Te interesa?. Pasa adentro, por favor.

Leer más...
Otros Temas Interesantes
Noticias
Curso de ELECTRÓNICA BÁSICA 06

F.E.M. vs D.D.P. ¿Sabes diferenciarlas?

Si estás harto de leer textos y ver videos sobre estos parámetros, con enrevesadas y muy complicadas explicaciones que no logras entender, y aún no sabes exactamente que son ni tampoco sabes diferenciarlos, es probable que te interese leer esta noticia con video incluido.

Leer más...
Radioaficionados
Como mejorar el receptor de galena

Como continuación al artículo relativo al receptor con diodo de cristal o radio galena, presentamos la siguiente información en la que explicamos como mejorar dicho receptor de radio. No en vano, las mejoras introducidas conseguirán un mayor rendimiento de sus características.

Comenzaremos con una pequeña modificación de nuestro receptor original, añadiendole un transistor para obtener una pequeña amplificación de señal.

Lo verdaderamente interesante, sin embargo, es que a pesar de usar un componente activo, en un principio seguiremos usando solo la energía recibida por la antena, es decir, no usaremos ninguna bateria, pila ni fuente de alimentación.

Posteriormente, en este mismo artículo, estudiaremos otros circuitos a los que iremos dotando de mayor amplificación y a los cuales añadiremos ya una pequeña pila, con lo que el rendimiento obtenido será mayor y tanto su sensibilidad como su selectividad se verán ostensiblemente incrementadas con respecto a las ofrecidas por receptores anteriores.

Si verdaderamente te interesa la radio no puedes dejar de leer este apasionante artículo.

Leer más...
Miscelanea
Tira a matar - Juego de reflejos

¿Con que rapidez responde tu cuerpo a los impulsos externos?. ¿Cuanto tiempo necesitarías para reaccionar ante un peligro inminente?. Si oyes un disparo cercano ¿tus reflejos te hacen "salirte del pellejo"?.

Para poner a prueba la rapidez de respuesta a tus estímulos nerviosos hemos ideado un pequeño circuito con el que podrás medirte en este aspecto con otra persona, y de paso cultivar la faceta "reflexológica" del ser humano. Se trata de algo así como un duelo, lógicamente sin pistolas y sin balas pero eso si, al ser del todo electrónico, con botones y con luces.

Una vez construido el dispositivo se dispondrán dos botones de mayor o menor tamaño, los cuales accionarán sendos pulsadores conectados a nuestro circuito. Al oir una señal, los dos participantes se apresurarán a pulsar su correspondiente botón.

El más rápido de los dos se llevará el gato al agua y ganará el juego. Su victoria quedará fehacientemente constatada porque la luz que le corresponde indicará ese hecho.

Comenzamos con esta reseña una nueva categoría de artículos a la que llamaremos "Miscelánea", en la que tendrán cabida una amplia variedad de temas con multitud de contenidos. Esperamos que esta novedad sea de tu agrado.

Leer más...
Práctica
Soldador de temperatura controlada económico

Si es la primera vez que vas a comprarte un soldador es muy probable que te encuentres en una disyuntiva. En primer lugar, no tienes ni idea a que tipo de trabajos vas a enfrentarte y por ese motivo no te decides por una punta determinada.

Después está el tema de la potencia necesaria para el calentamiento: ¿Estarían bien 15W? ¿o quizás serían deseables 30W? ¿Prefieres a lo mejor un soldador de 60W para trabajos de cierta entidad?.

La evidente realidad es que el soldador tendría que elegirse en consonancia con el tipo de trabajo que uno vaya a realizar. Para soldaduras de componentes muy pequeños, delicados y los de tipo SMD es preferible un soldador de punta fina y de unos 15 watios. Sin embargo, si vas a usarlo para trabajos mas generales (componentes estandar, cables de conexión de cierto grosor, etc...) lo mejor sería acudir a uno de más potencia, como por ejemplo 30 watios.

Y si haces montajes que necesiten de alguna soldadura a masa localizada en la propia caja o chasis metálico del aparato que construyes, entonces lo mejor sería uno de 60 watios como poco y con un generoso tamaño de punta que permita el calentamiento de una zona amplia, de manera que esa soldadura no te salga "fria".

La pregunta que surge es: ¿no existe un soldador que permita la consecución óptima de la mayoría de los trabajos que un técnico electrónico realiza normalmente hoy dia?. La respuesta la tienes a continuación.

Leer más...
Teoría
Los condensadores I

Los condensadores son componentes muy usados en electrónica en general, pero esto se hace más cierto, sobre todo, en la especialidad de radio.

Puede decirse que para la construcción de un equipo de radio son absolutamente necesarios los condensadores. Sin ellos no hubiera sido posible el desarrollo actual de esta rama de la electrónica.

En el presente artículo, vamos a disertar más profundamente sobre los pormenores relativos a estos componentes. Además del cálculo de las configuraciones serie y paralelo, vamos a ver algunos detalles sobre su construcción y sobre los tipos de materiales que se utilizan en su fabricación.

Hablaremos además del dieléctrico, y el porqué la composición de este elemento modifica la capacidad de este componente electrónico. Todo ello en los artículos que os presentamos a partir de ahora. ¿Nos sigues?.

Leer más...
Noticias
¡Muchas gracias Marcial!

A veces ocurren cosas en la vida que podemos calificar de maravillosas, y eso es lo que precisa y personalmente me ha sucedido hoy mismo. Permíteme que te lo cuente, por favor.

Esta mañana he tenido la oportunidad de conocer a una gran persona. Se llama Marcial y vive en Cádiz capital.

Puedo asegurar que jamás nos habíamos visto antes y que nunca me había comunicado con él por ningún medio hablado o escrito antes de ayer, dia en el que intercambiamos algunos correos electrónicos y mantuvimos una conversación telefónica.

Marcial, haciendo gala de una espléndida generosidad, nos ha donado una ingente cantidad de revistas técnicas de electrónica. Al calificar de "ingente" la mencionada cantidad de información escrita no me estoy refiriendo a diez o quince revistas, ni a veinte, ni a treinta... Han sido más, muchísimas más. ¿Quieres saber cuantas?.

Leer más...

El receptor elemental (VII)

En el artículo anterior hemos visto en profundidad como funciona "internamente" un circuito resonante paralelo. Sin embargo, la realidad es que el conocer su funcionamiento no nos ha aclarado mucho con respecto a la faceta de selector de frecuencias que debe realizar en nuestro receptor elemental. En el artículo que empezamos ahora vamos a conocer, por medio de un sencillo experimento, que es lo que este circuito hace exactamente con las señales de radio para conseguir seleccionar una sola de ellas y desechar el resto.

Quizás te parezca que la lectura del artículo anterior no ha servido de gran cosa. Sin embargo te alegrará saber que no es así. Lo estudiado entonces va a servirte de mucho, y cuando llegue el momento en que toquemos los osciladores es muy probable que vuelvas a él para repasar los conocimientos que se exponen allí. Por ahora, solo puedo decirte que, si no lo has leído, harías bién en volver atrás y leerlo cuidadosamente, procurando entender lo que se dice y retener las ideas principales. Te puedo asegurar que te serán de mucha utilidad en el futuro, si sigues con nosotros.

Ahora, vamos a comenzar nuestro experimento. ¿Quieres pasar a verlo?... pues adelante.

Para empezar, vamos a necesitar un generador de corriente alterna, que podemos bautizar con el nombre de "oscilador", al que podamos modificarle la frecuencia dentro de unos márgenes determinados. También vamos a necesitar la ayuda de un amperímetro de alterna mediante el cual determinaremos la magnitud de la intensidad de corriente que circula en un momento dado por nuestro circuito.

Si ya tenemos el instrumental adecuado vamos a conectarlo de la manera que te indicamos en la siguiente ilustración. Fíjate que tanto el generador de corriente alterna, al que a partir de ahora llamaremos oscilador de frecuencia variable, como el amperímetro están conectados "en serie" con el circuito resonante paralelo.

La d.d.p. en la salida del oscilador permanece constante aunque variemos su frecuencia, razón por la cual también permanece constante la intensidad de corriente a través del circuito para diferentes valores de la frecuencia. Pero comencemos a modificar dicha frecuencia a ver que ocurre.

Supongamos que pretendemos recorrer de una punta a otra la banda de Ondas Medias. Para ello comenzaremos en 500 KHz e iremos subiendo dicha frecuencia progresivamente hasta llegar a los 1600 KHz. Si con cada variación de la frecuencia miramos la intensidad de corriente que marca el amperímetro, comprobaremos que hasta llegar casi a los 700 KHz la corriente se ha mantenido constante. Sin embargo, si continuamos subiendo la frecuencia del oscilador, la intensidad de corriente en el circuito disminuye rápida y progresivamente hasta que cae a un valor casi nulo, prácticamente cero, cosa que ocurre al llegar justo a los 800 KHz.

Si seguimos elevando la frecuencia del oscilador, el amperímetro parece despertar de su letargo y comienza de nuevo a marcar una intensidad de corriente que va ascendiendo de valor conforme nos alejamos de la frecuencia de 800 KHz. El valor de esta corriente se estabiliza de nuevo a partir de algo más de 900 KHz y continúa teniendo ese valor hasta llegar a los 1600 KHz.

La intensidad de corriente marcada por el amperímetro de nuevo permanece constante a partir de una frecuencia algo superior a los 900KHz. En la ilustración podemos apreciar gráficamente lo que acabamos de explicar.

Observa como las frecuencias cercanas a 800 KHz, tanto las anteriores como las posteriores, también están influenciadas por este efecto, tanto más cuanto más cercanas están de aquella.

A continuación, y teniendo presente el experimento anterior, vamos a cambiar una de las variables para visualizar los resultados con un enfoque distinto. La idea ahora es representar en un gráfico la resistencia que opone el circuito LC en función de la frecuencia del oscilador, en vez de usar la intensidad de corriente como parámetro como hemos hecho en la imagen anterior.

El proceso que realizamos con el oscilador es idéntico al que hemos hecho antes, comenzando con una frecuencia de 500 KHz y recorriendo la banda de Ondas Medias hacia arriba hasta llegar a los 1600 KHz.

Vemos con claridad como la resistencia del circuito resonante paralelo LC aumenta extraordinariamente cuando la frecuencia del oscilador ronda los 800 KHz.

Examinando lo ocurrido y analizando los resultados desde este último punto de vista podemos decir que un circuito resonante paralelo se comporta como una resistencia cuyo valor es constante y relativamente bajo para todas las frecuencias excepto para una, que llamaremos fo, a la que el circuito resonante presenta una resistencia extraordinariamente alta. A esta frecuencia (fo) se le conoce como "frecuencia de resonancia" del circuito LC.

Observa como la resistencia máxima presentada por el circuito corresponde a la frecuencia de resonancia (fo). En este caso concreto nuestro circuito LC tiene una "frecuencia de resonancia" de 800 KHz. A esta curva se le conoce como "curva de resonancia".

La frecuencia de resonancia depende de dos factores: por un lado del valor de la autoinducción de la bobina y por el otro de la capacidad del condensador. Si conociéramos ambos datos podríamos calcular fo hallando el inverso del resultado del producto de la raiz cuadrada de la capacidad del condensador en faradios por la autoinducción de la bobina en henrios multiplicado por el doble de π (pi). Seguro que lo verás mas claro con la ayuda de la siguiente fórmula:

En la expresión anterior fo representa la frecuencia de resonancia, L es la autoinducción de la bobina en henrios y C es la capacidad del condensador en faradios. Para simplificarla un poco, podemos poner directamente el resultado de la multiplicación de π (pi) por 2, lo que nos daría 6,28 aproximadamente. Por lo tanto, la fórmula anterior quedaría de la siguiente manera:

Vemos pues, que gracias al circuito resonante paralelo, podemos llegar a tener un medio para seleccionar nuestra emisora preferida en el receptor elemental (ya veremos como lo conectamos). Claro que, a todos nos gusta poder cambiar de vez en cuando de sintonía. La pregunta que se impone ahora es... ¿Como modificamos la frecuencia de resonancia del circuito LC para poder sintonizar diferentes emisoras?.

MODIFICAR LA FRECUENCIA DE RESONANCIA
Antes lo hemos dicho: La frecuencia de resonancia de un circuito LC depende del valor de la capacidad del condensador y de la autoinducción de la bobina. Haciendo que el valor de uno de estos componentes sea variable, lograremos que la frecuencia de resonancia del circuito LC también sea variable.

Normalmente en la mayoría de los receptores analógicos comerciales actuales es el condensador el que realiza este trabajo, por lo que se le denomina "condensador variable". En algunos modelos de receptores, sobre todo en los más antiguos, se usaban bobinas con nucleo móvil para conseguir modificar su autoinducción y por lo tanto la frecuencia de resonancia del circuito LC al que pertenecía. Sin embargo, y como hemos dicho anteriormente, actualmente es el condensador el que se usa casi universalmente para ello.

El condensador variable está formado por dos grupos de placas metálicas. Uno de los grupos es fijo y el otro grupo tiene la facultad de poder girar por medio de un eje. Las placas de un mismo grupo están conectadas eléctricamente entre sí, de forma que se pueda obtener una capacidad máxima superior a la que se obtendría por medio de solo una placa en cada grupo. A más placas más capacidad cuando todas, móviles y fijas, están enfrentadas unas con las otras.

El efecto es el mismo que si el condensador tuviera solo dos placas mucho mas grandes de lo que son en realidad, de manera que sus respectivas capacidades se suman (esto lo veremos más detalladamente cuando toquemos los circuitos serie y paralelo).

Cuando las placas del grupo móvil no están enfrentadas a las del grupo fijo, o sea cuando están afuera, se obtiene la capacidad mínima posible para el condensador, y recíprocamente cuando las placas están enfrentadas unas con otras, o sea dentro, se obtiene la capacidad máxima.

El dieléctrico empleado en los condensadores variables de sintonía es normalmente aire o papel, aunque también existen condensadores variables de mica y cerámicos.

Fíjate atentamente en la foto. Se trata de un condensador variable con dieléctrico de aire. Observa como las placas móviles, al girar, salen o entran de entre las placas fijas dependiendo si el giro es a la izquierda o a la derecha. Es como cuando cruzamos los dedos de ambas manos, pero sin que lleguen a tocarse nunca los dedos de la mano izquierda con los de la mano derecha. ¿Lo entiendes?.

Por fín tenemos nuestro circuito resonante paralelo, cuya frecuencia de resonancia podemos modificarla a voluntad, listo para montarlo en nuestro receptor elemental. Las preguntas que surgen son... ¿Como va montado? ¿Como funciona exactamente?. De eso tratamos en nuestro próximo artículo. ¡¡No te lo pierdas!!.

 
C O M E N T A R I O S   
Impactado.!

#3 Esteban Ali » 07-03-2018 05:54

Hace tiempo buscaba la manera de encontrar la frecuencia de resonancia de manera alternativa.. la verdad que este articulo me sirvio muchisimo.! voy a compartir este link..

impactado.!

#2 Esteban Ali » 07-03-2018 05:51

la verdad no se por que no veo comentarios en algo tan productivo como esta explicacion.! llevo un monton de tiempo buscando la manera de encontrar alternativamente la frecuencia de resonancia.. agradezco el aporte.! :oks: :plup:

Felicitaciones

#1 carlos sanchez » 20-03-2013 23:28

Es definitivo que sus articulos son muy valiosos e ilustrativos por lo cual los felicito e insto a continuar. Aprovecho para hacer una consulta sobre el condensador o capacitor variable y es esta. Si las variaciones en capacitancia al oscilar el rotor permiten selecionar las frecuencias, como se conecta dicho capacitor a la siguiente seccion, Es decir, si rotor y estator deben estar estrictamente aislados y cuales serian los puntos mas recomendados para aprovechar las variaciones de capacitancia??? Agradezco algun comentario en respuesta. Hasta pronto

NO ESTÁS AUTORIZADO PARA COMENTAR
Por favor, regístrate e identifícate en el sistema. Gracias.