Acceso



Registro de usuarios
Contáctenos
Teoría
Las ondas (V)

Llegamos al último artículo relativo a las ondas. A través de los cuatro artículos anteriores hemos visto más o menos profundamente su naturaleza. Con lo estudiado hasta el momento ya tenemos suficiente conocimiento para continuar adelante, sin embargo vamos a seguir hablando un poco a lo largo de este artículo sobre algunas de las peculiaridades especiales de las ondas y también de algunas de sus aplicaciones prácticas, lo que ampliará nuestro entendimiento sobre este tema tan interesante.

Además vamos a explicar el significado de algunas expresiones comunes en radio, que quizás antes de leer este artículo no tenías claras en tu mente y que sin embargo las oímos todos los dias. Es posible que te sorprenda lo que vas a leer a continuación, o quizás no, pero en cualquier caso vamos a intentar que la lectura sea amena, agradable y entretenida.

Cuando acabes de leer estas páginas puedes dejar tu comentario, si lo deseas, y decirnos que te ha parecido ¿te agrada la idea?. Pues adelante.

Leer más...
Otros Temas Interesantes
Noticias
AFHA - Curso Electrónica, Radio y TV - Tomo 10

Tomo 10 del curso de Electrónica, Radio y Televisión de AFHA.

Leer más...
Radioaficionados
Sencillo receptor para Onda Corta (O.C.)

Es un verdadero placer comprobar como varios de los artículos más visitados del blog son los relativos a la construcción de receptores de radio.

Nuestra web cuenta con información para elaborar distintos tipos de receptores, todos ellos muy sencillos de llevar a cabo y en esto no pensamos cambiar por ahora.

Desde el tradicional "receptor de cristal" o "radio galena" hasta el "receptor a reacción", pasando por el "receptor reflex", todos ellos podéis encontrarlos aquí en el blog de Radioelectronica.es, en sus versiones "modernas" con transistores.

Hoy os proponemos algo que, sin ser muy distinto, si que es poco conocido. Se trata de un receptor de cristal que podríamos calificar como "amplificado", con una sensibilidad fuera de lo normal para estos dispositivos, pero además con escucha en altavoz y para las bandas de Onda Corta (OC). Descúbrelo clicando en "Leer completo...".

Leer más...
Miscelanea
Monitor para la batería del automóvil

Es curioso, pero la verdad es que a todos nos ha pasado alguna vez lo mismo. Nos levantamos una mañana de frio invierno, con prisas porque tenemos el tiempo justo para llegar al trabajo (el que tenga esa suerte). Introducimos la llave de contacto de nuestro auto y la giramos. ¡SORPRESA!... el motor de arranque no voltea o lo hace con desgana.

El coche no furula, no arranca... Entonces algunos manifestamos nuestro enfado en un idioma desconocido, emitiendo ciertos sonidos guturales como.... "Grrrrrrrrr!!!!!". Otros, algo más "expresivos", comenzamos a lanzar por nuestra boquita ciertos vocablos malsonantes, dirigidos sobre todo hacia nuestro sufrido auto que ya tiene, como poco, cinco o seis años.

Sin embargo, esta situación la podríamos haber evitado si hubieramos tenido instalado el circuito que describimos en el presente artículo. Se trata de un simpático piloto de color rojo que nos avisará antes de tiempo de que ha llegado la hora de sustituir la batería de nuestro coche.

Si has leido los dos primeros artículos de la sección "Básico" estamos seguros que no vas a tener problemas para asimilar lo que sigue. ¡Vamos allá!

Leer más...
Práctica
Microfono inalámbrico en FM "mini"

Con solo cuatro resistencias, unos pocos condensadores, un transistor y una pila vamos a construir un micrófono inalámbrico en FM de muy reducidas dimensiones.

Somos conscientes de la gran diversidad de circuitos de este tipo que circulan por la red. Sin embargo, muchos de ellos no están suficientemente detallados y a la hora de llevarlos a la práctica son problemáticos. Otros no tienen diseñada la correspondiente placa de circuito impreso, por lo que su montaje resulta bastante fastidioso.

Con nuestro circuito hemos querido llenar el hueco que creemos que falta en este ámbito; conseguir un micrófono inalámbrico en FM sencillo, eficaz, casi miniatura, fácil de implementar y con todos los datos pormenorizados necesarios para poder llevarlo a cabo sin problemas.

La información que corresponde a este artículo se la podrán bajar en formato PDF todos nuestros visitantes, registrados y no registrados, ya que se colgará en la sección de descargas gratis. Agradeceremos mucho su colaboración si hacen comentarios con sus experiencias al respecto.

¿Os apuntais a este reto?

Leer más...
Teoría
El transformador

Corría el año 1851 cuando el físico alemán Heinrich Daniel Ruhmkorff ideó la bobina que lleva su nombre. Se trataba de un generador que permitía producir tensiones elevadísimas, del orden de decenas de miles de voltios, a partir de la corriente continua de una batería. Con ello se logró conseguir la fuente de tensión necesaria para crear diferentes dispositivos que posteriormente traerían grandes beneficios para la humanidad.

La bobina de Ruhmkorff fué utilizada, por ejemplo, por Heinrich Rudolf Hertz para la realización de sus experimentos con ondas electromagnéticas, lo que significaría los inicios de la radio. También comenzó a utilizarse en los equipos de rayos X como generador electrovoltáico de alta tensión y en los equipos telegráficos de la época. Además, la invención de Ruhmkorff se utilizó en investigaciones relacionadas con diferentes ramas de la física y de la química.

En realidad, Heinrich Daniel Ruhmkorff lo que diseñó fué el primer transformador eléctrico, ya que de lo que se trataba era de un bobinado primario con unas pocas espiras de hilo relativamente grueso por el que se hacía circular una corriente continua pulsante y de un devanado secundario con muchísimas espiras más que el primario y realizado con hilo mas fino. Por lo tanto, Ruhmkorff tuvo el privilegio de fabricar el primer transformador elevador de la historia de la humanidad. ¿Quieres seguir aprendiendo cosas relacionadas con los transformadores? Sigue leyendo, por favor.

Leer más...
Noticias
Circuitos electrónicos comentados

Inauguramos una nueva sección en nuestro canal de Youtube a la que hemos llamado "Circuitos Electrónicos Comentados".

En la misma tendrán cabida aquellos circuitos que, a nuestro juicio, sean interesantes ya sea porque contienen un determinado componente electrónico que queramos analizar, porque mediante él se realice una determinada acción y estemos interesados en saber como funciona, porque despierte el interés del usuario aficionado a los montajes o simplemente por razones didácticas y pedagógicas.

Clica en "Leer completo..." para saber más.

Leer más...

El receptor elemental (IV)

Tenemos nuestro receptor elemental casi terminado. Con lo desacrrollado hasta ahora ya podemos oir emisoras suficientemente cercanas y potentes, pero necesitamos más. Necesitamos ganar algo de sensibilidad además de poder "seleccionar" la emisora que queramos escuchar y desechar las que no nos interesen. Esa es precisamente la función que debe realizar el selector. Gracias a este circuito podremos seleccionar la emisora que deseemos, sintonizando la frecuencia de su señal.

Para conseguir diferenciar y seleccionar una señal de RF de entre las demás hemos de recurrir al llamado "circuito resonante paralelo", compuesto por una bobina y un condensador conectados como podemos ver en la figura. Ya sabemos lo que es y como actúa básicamente un solenoide o bobina, pero aún no hemos dicho nada de los condensadores. Su estudio es completamente necesario para entender el funcionamiento del selector, aunque su participación en los circuitos electrónicos no se limita solo a esta faceta.

Al ser uno de los componentes electrónicos mas empleados, sobre todo en circuitos de radio, necesitamos imperiosamente conocer como funcionan, aunque solo sea superficialmente. Una vez que tengamos claro este punto podremos acometer el estudio de los circuitos resonantes, pieza clave del selector.

Cualquiera que tenga conocimientos de electrónica más o menos profundos es sabedor de un hecho particular que ocurre cuando varía el voltaje en un circuito. En la mayoría de ellos existe algo que se opone a estas variaciones de tensión. Esta oposición es conocida con el nombre de CAPACIDAD o CAPACITANCIA y, aunque no podemos verla, el efecto que produce es palpable en un circuito en cuanto modificamos el voltaje.

Dicho de otra manera, cuando bajamos el voltaje en un circuito la capacidad propia de dicho circuito intenta impedir esa bajada y tiende a mantener la tensión, y cuando subimos el voltaje la capacidad se opone a dicha subida y procura conservar el valor original de la tensión.

Después de decir esto es fácil suponer que en los circuitos que trabajan con corrientes continuas, el efecto capacitivo es solo apreciable en los momentos en que se conecta y se desconecta la tensión. En los circuitos que trabajan con corrientes alternas sin embargo, al estar variando la tensión constantemente a lo largo del tiempo, el efecto de la capacidad se deja notar de forma constante.

La capacidad existe en los circuitos electrónicos porque algunos de sus elementos son capaces de "almacenar cargas eléctricas". Estos tienen la propiedad de "cargarse eléctricamente" y esta carga eléctrica almacenada en ellos produce el efecto citado anteriormente.

EL CONDENSADOR
El nivel de capacidad inherente de un circuito va a depender de como esté construido y de los componentes electrónicos que lo implementen.

A veces interesa que un determinado circuito electrónico posea una capacidad relativamente alta para así evitar las variaciones de voltaje. Esto se consigue mediante los llamados CONDENSADORES o CAPACITORES, que son componentes electrónicos especializados en este aspecto, los cuales se fabrican con una amplia gama de valores capacitivos y se aprovechan, entre otros usos como veremos más adelante, para colocarlos estratégicamente en aquellos puntos donde nos interese que las variaciones de tensión sean mínimas.

Básicamente, podemos decir que un condensador no es más que un par de placas metálicas enfrentadas entre sí llamadas "armaduras", las cuales están casi pegadas la una de la otra pero sin llegar a tocarse, y entre las que existe un medio aislante llamado "dieléctrico", como puede ser por ejemplo aire, mica, poliestireno, etc...

Los condensadores tienen la propiedad de cargarse eléctricamente cuando le aplicamos una tensión a sus bornes, y esta carga eléctrica queda almacenada o "condensada" en ellos durante cierto tiempo después de desconectar la fuente de energía. La capacidad de un condensador depende de diferentes factores que vamos a estudiar a continuación. Puedes ver algunos de los símbolos usados para representar este componente en la ilustración de arriba.

COMPORTAMIENTO EN CORRIENTE CONTINUA
Estudiemos lo que ocurre con la corriente y la tensión en un circuito con una pila, un interruptor y un condensador.

En el momento en que conectamos el interruptor la diferencia de potencial de nuestra pila se hace notar inmediatamente en las armaduras del condensador. Debido a la proximidad mutua de dichas armaduras, la placa del condensador que está conectada al polo positivo de la pila atrae a los electrones de la otra hacia sí, aunque lógicamente no pueden abandonar su armadura y atravesar el dieléctrico, y la conectada al polo negativo de la pila repele a los electrones de la que tiene enfrente. Por lo tanto, en el momento de conectar el interruptor se crea dentro del condensador una fuerza de atracción-repulsión.

Esta fuerza de atracción-repulsión en las entrañas del condensador hace que se establezca una corriente eléctrica en el circuito, corriente que "extrae" electrones de la armadura conectada al polo positivo de la pila y, circulando a través de la propia pila, los "introduce" en la armadura que está conectada al polo negativo.

Nota que en ningún momento circula corriente alguna por el interior del condensador a través de su dieléctrico, sino que solo lo hace por el circuito exterior. Una armadura cede electrones al polo positivo de la pila y la otra los recoge del polo negativo. Se va produciendo entonces un defecto de electrones en una de las placas y un exceso en la otra.

El condensador va adquiriendo una d.d.p. entre sus placas cuyo sentido es opuesto al de la pila. Cuando esta d.d.p. llega a ser del mismo valor que la que tiene la pila ambas quedan compensadas y entonces la corriente deja de fluir y para. Decimos entonces que el condensador se ha cargado.

Una de las placas ha quedado con carga negativa pués tiene un exceso de electrones, y la otra ha acabado con carga positiva pués sufre un defecto de electrones. Entre las armaduras del condensador se establece lo que se llama un "campo eléctrico".

Si en estas condiciones abrimos el interruptor, el condensador permanecerá cargado, ya que hemos interrumpido el circuito y esa carga que posee no puede circular a través del dieléctrico el cual como hemos dicho está fabricado de material aislante (en este ejemplo hemos considerado que el dieléctrico es aire). Teóricamente el condensador jamás perderá esa carga, aunque como sabemos eso no es posible al no existir un material aislante perfecto con que fabricar dicho dieléctrico.

Con esto hemos podido apreciar algo importante:

En un circuito eléctrico en el que exista un condensador conectado a una fuente de energía eléctrica de corriente continua, la corriente a través de ese circuito solo circulará durante el tiempo necesario para cargar el condensador

Si en dicho circuito tuviéramos intercalado un amperímetro, veríamos que dicho instrumento señalaría la máxima intensidad de corriente justo en el instante en que cerramos el interruptor. Esa corriente iría disminuyendo paulatinamente conforme aumentara la tensión entre las placas del condensador.

En el momento en que esa tensión se igualara a la de la pila, el instrumento dejaría de indicar el paso de corriente alguna, ya que la tensión adquirida por el condensador compensaría la tensión de la pila y esto haría desaparecer la fuerza de atracción-repulsión que mencionamos anteriormente generada en el interior del condensador por la pila. Ahora lo que si existe en el interior del condensador es lo que hemos quedado en llamar un "campo eléctrico", generado por la carga que el condensador ha obtenido de la pila.

Para no hacer excesivamente largo este artículo vamos a parar aquí. En el próximo hablaremos de como reacciona un condensador cuando se le somete a la acción de una corriente alterna, lo cual nos interesa muchísimo para conocer el funcionamiento de los circuitos resonantes, los cuales funcionan con este tipo de corrientes. Además, en otros artículos, daremos información más completa sobre los condensadores y sobre los dieléctricos. Adelantándonos un poco, deciros que la capacidad de un condensador puede aumentar bastante cuando usamos un dieléctrico distinto al aire. Veremos el porqué esto es así. Hasta la próxima, nos vemos aquí en Radioelectronica.es, tu punto de encuentro.

 
C O M E N T A R I O S   
condensadores

#1 miguel » 07-06-2015 01:24

Cómo reacciona un condensador en relación a la variación de voltaje?

NO ESTÁS AUTORIZADO PARA COMENTAR
Por favor, regístrate e identifícate en el sistema. Gracias.