Acceso



Registro de usuarios
Contáctenos
Teoría
Fuerza Electromotriz - Ley de Ohm

Ya hemos mencionado en un artículo anterior la expresión "fuerza electromotriz", la cual se representa como "f.e.m." de forma abreviada. Con respecto a este concepto queremos dejar claro cierto matiz, que quizás no hemos entendido a cabalidad al no haber profundizado lo suficiente en el tema, relativo a su relación con la diferencia de potencial (d.d.p.). ¿Significa lo mismo fuerza electromotriz (f.e.m.) que diferencia de potencial (d.d.p.)? Unas personas creen que si, otros dicen que no, y sin embargo para cuantificar y medir los dos parámetros se utiliza la misma unidad, el voltio. ¿Que piensas tu?.

Por otra parte, en el artículo precedente hemos hablado de la última unidad de medida básica que nos faltaba para comenzar a hacer cálculos con circuitos electrónicos. Nos referimos al ohmio. Tenemos ya claro lo que es la unidad de diferencia de potencial o tensión (V), el voltio. También tenemos claro en nuestra mente lo que es la unidad de intensidad de corriente (I), el amperio. Y, como hemos dicho, recientemente hemos hablado de la unidad de resistencia eléctrica (R), el ohmio. ¿Que esperamos entonces para hablar de la célebre ley de Ohm?. En este artículo comenzamos ya a adentrarnos en el corazón de los circuitos electrónicos, hablaremos de ciertos tipos de generadores y además, de paso, aclararemos algunos conceptos como la diferencia entre corriente continua (C.C.) y corriente alterna (A.C.). ¿Te parece interesante? Pasa dentro, por favor...

Leer más...
Otros Temas Interesantes
Noticias
Un maravilloso rincón de la sierra de Cádiz

Hoy me levanté decidido a dar una vuelta por la sierra de mi querida Cádiz. Quise olvidarme de las bobinas, de los condensadores, de las antenas y de los electrones. Tenía la necesidad de respirar aire fresco, aire puro libre de la contaminación de la gran ciudad. Me coloqué la camisa, el pantalón, los zapatos y cogí las llaves del coche. Lo puse en marcha y emprendí el viaje hacia el destino elegido.

Iba conduciendo tranquilamente cuando vi la indicación de la salida hacia "Arcos de la Frontera". Quise sorprender a mi mujer, que dicho sea de paso venía conmigo porque me acompaña a todas partes, y de pronto grité... ¡¡vamos a visitar esta localidad!!. Ella asintió y generosamente dijo... ¡¡vamos allá!!.

Leer más...
Radioaficionados
Montar una antena de móvil (I)

A cuantos les ha ocurrido alguna vez que habiendo comprado una emisora de C.B. o VHF ha necesitado montar la antena en su automóvil. Pero... ¿Quién puede hacerlo con garantía de éxito?. Resulta que montar la dichosa antena parece ser algo relativamente fácil, pero luego viene algo que es más difícil que la instalación propiamente dicha... ¡El ajuste!.

Efectivamente, el ajuste de una antena montada en un automóvil a veces da muchos quebraderos de cabeza por diferentes razones. Muchos son los que lo han intentado y no lo han conseguido. Sus comentarios, después de la instalación, son generalmente estos: "Mi equipo solo tiene un alcance de unos cientos de metros, no aleja", "Recibir si que recibo, pero a mi no me escuchan", "Cuando llevo un rato intentando modular y toco la emisora... ¡casi me quemo!"... y cosas por el estilo. ¿Te ha ocurrido esto a tí en alguna ocasión?

¿Que te parecería si alguien te explicara exactamente como debes montar y posteriormente ajustar una antena? Aquí en "radioelectronica.es", y leyendo atentamente este artículo, estamos seguros de que serás capaz de montar correctamente una antena de radioaficionado en tu coche, o en el de un amigo, y posteriormente ajustarla a la perfección para que tu equipo de radio rinda al máximo posible sin calentarse más de lo necesario. No solo la recepción de tu emisora será buena, sino que cuando emitas con ella lo hará a las mil maravillas. ¡La única pega es que cuando aprendas todos querrán que le montes la suya!. ¿Te gusta la idea?... Pués sigue leyendo.

Leer más...
Miscelanea
La circunferencia, el círculo y el número PI (π)

La mayor parte de las personas que vivimos en paises desarrollados, quizás porque estamos acostumbrados a obtenerlo todo con suma facilidad y/o que las cosas vengan a nosotros como caídas del cielo, a menudo las damos por sentadas de manera automática.

Practicamente en ningún momento nos preguntamos porqué algo es o se produce de una determinada manera. Nos basta con saber que tal o cual cosa es como es y punto, lo aceptamos sin reservas.

Algo así nos ha ocurrido a muchos cuando asistíamos a la escuela, en épocas pasadas. ¿Recuerdas cuando aprendiste la fórmula para hallar la longitud de la circunferencia?. ¿O cuando te enseñaron la fórmula para calcular la superficie del círculo?. Todos las aceptamos sin pestañear, y pocos fuimos los que nos preguntamos de donde habia salido el famoso número PI (π). Muchos daban por sentado que aquello era así porque lo decía nuestro profesor de matemáticas y se acabó.

Pero en realidad, esas conocidas fórmulas han salido de algún sitio o, mejor dicho, han sido promulgadas por una o varias personas después de haber dedicado mucho tiempo y esfuerzo al estudio de estas figuras geométricas.

¿Te gustaría saber más sobre este tema y conocer como se han llegado a obtener las mencionadas fórmulas y como están relacionadas entre ellas?... ¡Pues clica en "Leer completo..." ya!.

Leer más...
Práctica
Monitor para fusible

Con relativa frecuencia nos ocurre que, cuando de golpe nuestro equipo electrónico deja de funcionar, en principio nos asaltan las dudas y la desorientación por desconocer el motivo del contratiempo.

No obstante, en multitud de ocasiones pasa que el inconveniente lo produce un fusible que, bien por envejecimiento o por cualquier otra causa puntual, ha fundido y ha dejado sin alimentación al circuito.

Para que salgamos de dudas de forma inmediata, sin necesidad de desmontar ni un solo tornillo del aparato en cuestión, podemos instalarle este sencillo monitor que nos confirmará mediante un simple diodo LED si efectivamente se trata del fusible de protección que ha saltado.

¿Crees que resultará muy complicado llevar a cabo este montaje?... Para darte una pista te diremos que, en su versión de baja tensión, solo está compuesto del mencionado diodo LED y su correspondiente resistencia limitadora.

¿Verdaderamente crees que será dificil llevar a la práctica este dispositivo?. Sigue leyendo y verás que apenas tiene dificultad.

Leer más...
Teoría
Telecomunicaciones - El teléfono

Indudablemente, el telégrafo fué un adelanto tecnológico importantísimo en una sociedad en la que nunca habían existido las comunicaciones instantáneas a larga distancia. Aunque una persona que tuviera la necesidad de comunicarse con alguien situado a cientos de kilómetros de distancia tuviera que salir del hogar e ir a la oficina telegráfica más cercana para poner el mensaje, aquello no era en modo alguno un obstáculo importante. Lo verdaderamente importante era que esa persona recibiera el mensaje a los pocos minutos, sin importar el tener que desplazarse fuera de casa y solicitar los servicios de los telegrafistas profesionales habituados al código Morse. Pero los seres humanos siempre queremos más y además tendemos a la comodidad.

Lo ideal, en aquel momento, era no tener que depender de una oficina de telégrafos y poder expresar directamente a la persona interesada, con nuestras propias palabras, aquello que queríamos transmitirle, y si no se tuviera que salir de casa para ello... ¡mucho mejor!. Se imponía la necesidad de poder transmitir de manera instantánea la voz humana. Los científicos se pusieron manos a la obra y un buen dia... ¡voilá!... nació el teléfono.

Leer más...
Noticias
Mas descargas añadidas

Con gran alegría queremos comunicaros la disponibilidad de decenas de descargas de información técnica muy interesante para radioaficionados. Hemos conseguido cientos de esquemas de circuitos de emisoras, micrófonos, etc... Todo ello de marcas tan conocidas como President, Alan, Alinco, Cobra, Sadelta, Ranger, Stalker, TTI, Intek, etc...

Al mismo tiempo iremos publicando decenas de hojas de datos de componentes electrónicos, las llamadas datasheet, con el fin de que podais hacer un pequeño fichero con los datos de los componentes más interesantes.

Toda esta información la pondremos a vuestra disposición poco a poco, a razón de lo que el tiempo nos permita. La calidad de los gráficos es generalmente buena, aunque debemos decir que también existen esquemas con una calidad no tan buena. Esto último procuraremos indicarlo en la información referente a cada descarga.

Queremos manifestar que estamos abiertos a vuestras sugerencias y opiniones, y deciros que nuestro deseo es mejorar constantemente. Podéis por tanto hacer uso del contacto con nuestra administración para hacernos llegar vuestra crítica, y nos agradaría sobremanera que ésta fuera constructiva.

Leer más...

El receptor elemental (VI)

Una vez que hemos visto qué es un condensador y cual es su funcionamiento tanto en circuitos de corriente continua como en circuitos de corriente alterna, pasamos a ver que papel juega este componente electrónico en el selector de frecuencias de nuestro receptor elemental.

Ya hemos mencionado que el selector de frecuencias de nuestro sencillo receptor lo forman dos componentes: una bobina y un condensador. A estas alturas conocemos ambos elementos y, básicamente y de forma aislada, sabemos como funcionan. Ahora nos toca profundizar un poco en el comportamiento de los mismos cuando se montan juntos, formando ambos el corazón del selector de frecuencias de nuestro receptor.

Es verdad que hemos comentado que lo que ocurre en este tipo de circuitos es algo un tanto complejo, pero esto no va a impedir que, mediante varios ejemplos y con algunas ilustraciones, conozcamos los efectos que se producen cuando bobina y condensador hacen su trabajo particular de seleccionar señales de R.F. en el receptor que estamos estudiando. ¿Te apetece seguir?.

Mediante los llamados "circuitos resonantes", también conocidos como "circuitos oscilantes", nos va a resultar posible "sintonizar" la señal de R.F. deseada y posteriormente procesarla de modo que, una vez que la hayamos separado del resto, podamos "extraerle" la señal de B.F. (Baja Frecuencia) que ha viajado cabalgando sobre la primera.

Para empezar vamos a explicar la teoría de funcionamiento de estos circuitos de la manera más simple posible y sin acudir a las matemáticas. En el artículo siguiente haremos un pequeño experimento mediante el cual se nos van a despejar todas las incógnitas que tenemos sobre ellos y llegaremos a entender como funcionan en un selector de frecuencias.

FUNCIONAMIENTO DE UN CIRCUITO RESONANTE
Suponemos que tienes frescos en tu mente los conocimientos básicos relativos a las inductancias o bobinas y a los condensadores. Si no es así te recomendamos encarecidamente que vuelvas atrás y estudies los artículos relativos al electromagnetismo (parte I y parte II), el transformador y a los condensadores (parte I y parte II).

Para empezar podemos decir que el funcionamiento de un circuito resonante se basa en un intercambio de energía: la energía eléctrica del condensador se transfiere a la bobina y acto seguido la energía magnética de la bobina se transfiere de nuevo al condensador. Esta sucesión de transferencias de energia podría seguir de forma indefinida si tanto la bobina como el condensador fueran perfectos y no existieran las consabidas pérdidas en ninguno de los dos componentes. A continuación vamos a desgranar el proceso paso a paso para lo cual nos vamos a servir del circuito mostrado debajo.

Como puedes ver se trata de una pila, un condensador y una bobina conectados a través de un conmutador (señalado con un recuadro rojo y estando en principio colocado en la posición de reposo). En realidad, la pila nos servirá solo para cargar el condensador y así obtener la energía necesaria para que el circuito comience a funcionar. Para ello colocamos el conmutador en la posición que conecta la pila con el condensador y esperamos hasta que este último esté completamente cargado (ver figura siguiente).

Una vez conseguido lo anterior, colocamos de nuevo el conmutador en su posición de reposo. Vemos que en esta situación tenemos el condensador cargado electricamente. Dentro de un momento vamos a conectarlo a la bobina que se encuentra en "paralelo" con él.

En la ilustración siguiente podemos apreciar como el condensador, cargado gracias a la acción de la pila, lo hemos conectado en paralelo con la bobina a través del conmutador. Estamos a punto de presenciar el efecto "resonancia" en un circuito bobina-condensador en paralelo, también conocido por las siglas "LC".

A partir de ahora dejaremos de representar a la pila en nuestras ilustraciones puesto que ya ha cumplido su cometido (cargar el condensador) y también suprimiremos el conmutador, el cual nos ha servido para comprender como podemos cargar primero el condensador y luego, una vez cargado, conectarlo a la bobina. Entendemos, por tanto, que para empezar a estudiar el fenómeno de la resonancia en un circuito LC paralelo disponemos de UN CONDENSADOR CARGADO ELÉCTRICAMENTE y UNA BOBINA EN PARALELO con él. ¿Estás de acuerdo?.

Para llegar a comprender como funciona un circuito LC paralelo tienes que tener claro en tu mente los parámetros que intervienen en su funcionamiento. Son los siguientes:

1. Tensión en el condensador
2. F.E.M. inducida en la bobina
3. Corriente de descarga del condensador
4. Corriente inducida en la bobina
5. Campo magnético producido en la bobina

Debes conocer perfectamente que significan estos CINCO PARÁMETROS a la hora de estudiar el funcionamiento de este circuito y además, debes ser consciente del efecto que produce cada uno de ellos en cada instante determinado del proceso, sin pensar en su desarrollo como "un todo" sino mas bién imaginando que podemos "parar el tiempo" en cada uno de los momentos que se explican y entonces observar que está ocurriendo en las entrañas de nuestro circuito LC paralelo. Si no tienes muy en cuenta estos detalles, todo esto te parecerá un verdadero lio y casi con completa seguridad no llegarás a entender nada del asunto.

Si has captado la idea podemos seguir adelante, pero antes podrías imprimir en papel el gráfico representado en la última parte de este artículo. En él se detalla el desarrollo de cada uno de los tres parámetros más importantes del circuito LC paralelo en función del tiempo: tensión en el condensador (debida a la carga que contiene en cada momento), tensión inducida en la bobina y corriente a través del circuito. Observa en dicho gráfico como la corriente está desfasada 90º tanto con la tensión del condensador como con la f.e.m. inducida en la bobina (ya hablaremos de esto más adelante).

Al momento de conectar el condensador cargado a la bobina estamos en el inicio de la primera fase (momento A); el condensador comienza a descargarse a través del solenoide. Como dicha corriente de descarga produce casi de forma inmediata una f.e.m. inducida en la bobina, f.e.m. que tiene un valor similar a la tensión del condensador y es de polaridad opuesta, la intensidad de esta corriente de descarga no sube a su máximo nivel de manera instantánea ya que la f.e.m. opuesta inducida en la bobina se lo impide, sino que lo va haciendo gradualmente en el tiempo como se puede ver en la ilustración gráfica del final que representa estos parámetros. Mientras esto ocurre comienza a formarse un campo magnético en la bobina producido por la propia corriente de descarga del condensador.

La intensidad de la corriente de descarga tiende a aumentar y mientras tanto la tensión en bornes del condensador y también la f.e.m. inducida en la bobina van decreciendo (momento B). Conforme la intensidad de la corriente de descarga del condensador aumenta, también va aumentando proporcionalmente el campo magnético generado en la bobina.

En este punto debes tener claro que la tensión en bornes del condensador y la f.e.m. inducida en la bobina son SIEMPRE DE IDÉNTICO VALOR Y DE POLARIDAD OPUESTA. Esto se mantiene a lo largo de todo el tiempo que el circuito esté funcionando.

Llega el momento en que el condensador casi se ha descargado por completo. La d.d.p. en sus bornes y consecuentemente la f.e.m. inducida en la bobina se han reducido casi a cero. Toda la energía eléctrica que se encontraba en el condensador ahora se ha trasladado a la bobina y, por esta razón, su campo magnético ha alcanzado un nivel máximo. Es en este preciso instante cuando la intensidad de corriente de descarga del condensador también tiene un nivel máximo (momento C).

Lógicamente, al no quedarle apenas carga alguna al condensador, a partir de este momento la intensidad de corriente a través del circuito comienza a disminuir pero no lo hace de forma brusca, como lo haría en el caso de que no estuviera presente la bobina.

Al comenzar a disminuir dicha corriente también lo hace el campo magnético que ésta crea en la bobina. Esta disminución del flujo magnético produce en el solenoide una f.e.m. de signo contrario al que tenía cuando el condensador estaba cargado, provocando una corriente inducida que tiende a mantener la que hasta el momento estaba circulando a su través y que estaba producida por la descarga del condensador.

Esto hace que cambien las tornas y ahora sea el condensador el que reciba la carga eléctrica de la propia bobina. Efectivamente, gracias a la corriente que produce la f.e.m. (de signo contrario a la primera) inducida por el campo magnético menguante de la bobina, en este instante comienza a cargarse el condensador con polaridad inversa a la que tenía en principio (momento D).

Observa que este es precisamente el efecto del que habíamos hablado al comenzar nuestro artículo. Durante la descarga del condensador, la corriente en el circuito ha estado aumentando y gracias a ella se ha formado un campo magnético en la bobina. La energía que inicialmente estaba almacenada en el campo eléctrico del condensador, ahora se ha transferido al solenoide y está presente en su campo magnético.

Aunque en un momento determinado el condensador estuvo completamente descargado, la corriente continúa fluyendo gracias al efecto de la bobina en el circuito, hasta tal punto que el condensador comienza a cargarse en sentido contrario. Su polaridad comienza a ser opuesta a la que tenía en un principio. La energía almacenada en el campo magnético de la bobina comienza a transferirse de nuevo al condensador. ¿Entiendes el punto?.

La corriente de descarga del condensador, que había llegado a su punto máximo justo cuando casi no le quedaba carga eléctrica, es "sustituida" de forma casi inmediata por la corriente inducida en la bobina (del mismo sentido que aquella). Conforme pasa el tiempo y el campo magnético de la bobina sigue menguando su f.e.m. inducida va aumentando, lo que hace que aumente también la carga que recibe el condensador y consecuentemente la tensión en sus bornes.

Con el paso del tiempo el condensador se va cargando, la corriente inducida va disminuyendo, la f.e.m. inducida en la bobina sigue aumentando y la tensión en el condensador también aumenta. Una vez que el condensador ha alcanzado su carga máxima (la misma que tenía al principio solo que de signo contrario), cesa la corriente inducida y también cesa el campo magnético de la bobina (momento E).

Ahora la tensión en el condensador es máxima, de valor idéntico y de polaridad opuesta a la que tenía al comenzar este experimento. Estamos justo donde empezamos pero con la carga eléctrica del condensador invertida. El proceso comienza de nuevo, aunque esta vez la corriente comienza a circular en sentido contrario a como lo hizo al principio. El proceso se repite y se repite hasta que por causa de las pérdidas producidas en la bobina y en el condensador, la oscilación es rápidamente amortiguada llegando a anularse por completo en poco tiempo.

En la siguiente ilustración puedes ver claramente los valores que adquieren en cada instante cada uno de los parámetros más importantes de este circuito: la tensión en el condensador, la f.e.m. inducida en la bobina y la corriente a través del circuito. Para mayor claridad, cada uno de ellos se representa con un color distinto. Si haces click en la imagen ésta se ampliará y podrás verla con mas detalle.

Te repetimos nuestra recomendación de que imprimas el gráfico y lo tengas delante de ti cuando estudies este artículo. Es probable que así te resulte más fácil de entender el proceso de las oscilaciones en un circuito LC paralelo. Esperamos que este artículo te haya sido de utilidad. Más en el siguiente. Hasta entonces.

 
C O M E N T A R I O S   
RE: El receptor elemental (VI)

#3 Gabriel » 04-04-2015 17:30

felicidades por la explición tan clara, es complicado en internet encontrar literatura tan didactica y amena

RE: El receptor elemental (VI)

#2 Gabriel » 04-04-2015 17:28

muy buena explicación, es muy complicado encontrar literatura en internet que lo explique tan claramente.
Gracias

RE: El receptor elemental (VI)

#1 INFINUE » 21-05-2012 12:41

MUY UTIL AGRADESCO TODO EL CONOCIMIENTO QUE BRINDAS O BRINDAN PORQUE HAY SERES QUE DECEAN APRENDER PERO AVECES NO TIENEN RECURSOS ($).GRASIASSSSS DE VERDAD .SALUDOS

NO ESTÁS AUTORIZADO PARA COMENTAR
Por favor, regístrate e identifícate en el sistema. Gracias.