El receptor elemental (V)
Continuamos con la descripción del receptor elemental. Ya casi hemos llegado a nuestra meta. Solo nos faltan los conocimientos relativos al selector de frecuencias para tener una idea exacta del funcionamiento de nuestro sencillo equipo de radio, y también una idea aproximada del funcionamiento de los modernos receptores actuales. Para ello es absolutamente necesario que continuemos estudiando el comportamiento del condensador, en esta ocasión en circuitos de corrientes alternas, para lo cual nos vamos a ayudar de un pequeño truco.
Como estudiaremos más adelante, los efectos que produce un condensador conectado en paralelo con una bobina o solenoide, nos da la posibilidad de seleccionar la frecuencia de una señal de radio para usarla con el propósito de oir el "contenido" de su modulación, rechazando el resto de señales que no nos interesen en ese momento.
Aunque lo que realmente ocurre "dentro" de los circuitos resonantes (así se llama a la bobina que tiene un condensador en paralelo con ella) es algo relativamente complejo, creemos que merece la pena que te adentres en este conocimiento, ya que ello te va a permitir comprender el funcionamiento de los circuitos que manejan la señal de R.F. en un receptor de radio moderno. ¿Te atreves a continuar?.
Para empezar, fíjate en el circuito que te proponemos para que comiences a entender como funciona un condensador en un circuito de corriente alterna. ¿Sorprendido?... ¡¡Efectivamente!!... Ahora seguimos teniendo, no una sola, sino dos pilas, que como sabemos generan corriente continua y no alterna. ¿Como vamos a aprender sobre corrientes alternas usando corriente continua?. ¡No te desesperes y sigue leyendo!.Como puedes ver, además de las dos pilas disponemos de dos conmutadores, los cuales se encargarán de conectar bien la "pila 1" o bien la "pila 2" al condensador, como veremos a continuación. Además, si te fijas, las pilas están colocadas de tal manera que su polaridad, una vez que se conecten al condensador, cambiará de sentido. Gracias a este circuito veremos como el condensador, aunque bloquea el paso de la corriente continua como vimos en el artículo anterior, SI QUE PERMITE EL PASO DE LA CORRIENTE ALTERNA.
COMPORTAMIENTO EN CORRIENTE ALTERNA
Para comenzar nuestro experimento vamos a conectar en principio la pila número 2 al condensador. Como estudiamos en el artículo anterior, nuestro condensador comenzará a cargarse. Los electrones comenzarán a circular desde una placa hacia la otra, de manera que una de ellas quedará con exceso de electrones y por lo tanto con polaridad negativa, mientras que la otra quedará con defecto de electrones y por lo tanto su polaridad será positiva.
Llegará un momento en que esta corriente parará, ya que el condensador habrá adquirido una d.d.p. igual a la de la pila y ambos voltajes quedarán compensados. Una vez que esto ocurre abrimos los conmutadores. Vemos como el condensador permanece cargado, ya que los electrones no tienen por donde salir.
Hasta aquí todo nos resulta familiar ya que es exactamente igual que lo que vimos en el artículo anterior. Pero... ¿Que ocurrirá cuando conectemos los conmutadores en la posición inversa que tenían en un principio? Veámoslo.
Ahora el condensador está conectado a una pila cuya polaridad tiene sentido contrario a la primera. Los electrones del condensador se ven rápidamente atraidos por el polo positivo de esta segunda pila y su descarga es inminente. Comienza a circular una corriente eléctrica de sentido inverso a la primera hasta que el condensador llega a descargarse por completo. Pero esto no acaba aquí.
Aunque el condensador se haya descargado por completo la corriente en el circuito no cesa gracias a la d.d.p. de la pila, la cual hace que el condensador comienze a cargarse ahora con una polaridad de sentido contrario a la que tenía antes. La historia se repite, solo que a la inversa. La placa del condensador que antes era positiva ahora se vuelve negativa y viceversa.
Una vez que el condensador se ha cargado, ahora en sentido opuesto, de nuevo cesa la corriente a través del circuito. Si en este punto volvemos a abrir los conmutadores, resulta que el condensador mantiene una carga equivalente a la que adquirió en un principio pero de sentido contrario.
Vayamos más lejos. Si intercalamos en este circuito un amperímetro con cero central, como puede verse en la ilustración adjunta, y conectamos y desconectamos los conmutadores de forma alternativa a una y otra posición, tal y como hemos hecho anteriormente, el instrumento indicará el paso de sucesivas corrientes desde y hacia el condensador, corrientes que serán fruto de las sucesivas cargas y descargas del citado componente.
Estas corrientes circularán primero en un sentido y después en el otro, dependiendo de la posición que ocupen los conmutadores, y el amperímetro nos marcará el paso de dichas corrientes desplazando su aguja a derecha y a izquierda. Si fuéramos capaces de hacer el cambio de posición de los conmutadores lo suficientemente rápido, de forma que justo cuando el condensador alcance su carga máxima aquellos cambiaran de posición, y esta situación se pudiera mantener así a lo largo del tiempo, veríamos como el amperímetro no pararía e indicaría constantemente corrientes en uno y otro sentido. Hay que hacer aquí hincapié en que esto ocurre sin que pase ni un solo electrón a través del aire que separa las placas del condensador.
Si observamos lo que está ocurriendo, nos damos cuenta de que en este circuito particular, llamado circuito capacitivo, existen corrientes en uno y en otro sentido gracias a que las polaridades de las tensiones con que "atacamos" al condensador cambian constantemente. Y entonces se nos enciende una lamparita en nuestro cerebro y nos preguntamos... estos cambios de polaridad... ¿no es lo que caracteriza a la corriente alterna?. ¡¡Pués claro que si!!.
Si sustituimos las pilas y los conmutadores por un generador de corriente alterna, resulta que la polaridad aplicada al condensador se invierte de forma "automática" cada medio ciclo (¿lo recuerdas?). El condensador se cargará y se descargará sin necesidad de que hagamos nada en absoluto y la corriente en el circuito no cesará de fluir en uno y otro sentido.
Si también sustituimos el amperímetro con cero central por uno especial que mida las corrientes alternas, este instrumento nos indicará el paso de una corriente a través del circuito, corriente que debemos de recordar se produce gracias a las sucesivas e ininterrumpidas cargas y descargas de nuestro condensador.
Aunque hay mucho más que hablar con respecto a los condensadores, esto lo vamos a hacer en otros artículos dedicados exclusivamente a ellos. Por ahora tenemos bastante para continuar con el estudio de nuestro receptor elemental. Esperamos que hayas disfrutado con la lectura. Nos animaría mucho que dejaras algún comentario, si lo deseas. Hasta la próxima.
Luis Pepin » 18-08-2024 17:02
Departamento Técnico » 27-02-2017 21:22
Hola Marcos. Que sepamos, en ningún sitio decimos que los electrones pasan de una armadura a la otra del condensador a través del dieléctrico. En todo caso podríamos decir que pasan de una armadura a la otra atravesando el circuito del que forma parte, pero nunca a través del dieléctrico.
El dieléctrico debe ser siempre un buen aislante y no puede elegirse si será "muy conductor o poco".
Gracias por tu comentario.
Marcos » 14-02-2017 15:28
Dice el artículo que todo esto pasa sin que los electrones atraviesen el material dieléctrico, ¿Esto significa que los electrones no pasan justo por el material pero si que pasan por algún otro sitio del condensador? Esto lo digo porque en el anterior artículo si que dice que los electrones pasan de un sitio a otro... Me imagino que pasarán pero muy poco, porque tenía entendido que tú puedes elegir si es muy conductor el dieléctrico o poco.
Gracias!
Suscripción de noticias RSS para comentarios de esta entrada