Acceso



Registro de usuarios
Contáctenos
Teoría
El receptor elemental (IV)

Tenemos nuestro receptor elemental casi terminado. Con lo desacrrollado hasta ahora ya podemos oir emisoras suficientemente cercanas y potentes, pero necesitamos más. Necesitamos ganar algo de sensibilidad además de poder "seleccionar" la emisora que queramos escuchar y desechar las que no nos interesen. Esa es precisamente la función que debe realizar el selector. Gracias a este circuito podremos seleccionar la emisora que deseemos, sintonizando la frecuencia de su señal.

Para conseguir diferenciar y seleccionar una señal de RF de entre las demás hemos de recurrir al llamado "circuito resonante paralelo", compuesto por una bobina y un condensador conectados como podemos ver en la figura. Ya sabemos lo que es y como actúa básicamente un solenoide o bobina, pero aún no hemos dicho nada de los condensadores. Su estudio es completamente necesario para entender el funcionamiento del selector, aunque su participación en los circuitos electrónicos no se limita solo a esta faceta.

Al ser uno de los componentes electrónicos mas empleados, sobre todo en circuitos de radio, necesitamos imperiosamente conocer como funcionan, aunque solo sea superficialmente. Una vez que tengamos claro este punto podremos acometer el estudio de los circuitos resonantes, pieza clave del selector.

Leer más...
Otros Temas Interesantes
Noticias
MATEMÁTICAS BÁSICAS para electrónica II

Capítulo 2 de la serie de matemáticas básicas

Te presentamos la segunda entrega de nuestra serie de videos de matemáticas básicas para electrónica.

En él hablamos de las fracciones, poniendo énfasis en las operaciones que más frecuentemente se usan en los cálculos habituales que necesariamente se han de implementar al estudiar electrónica.

Para más detalles clica en LEER COMPLETO...

Leer más...
Radioaficionados
Montar una antena de móvil (II)

Continuamos con el montaje de nuestra antena de móvil. En el artículo anterior vimos la necesidad de que la antena de móvil disponga de un buen plano de tierra ya que de lo contrario tendremos muchos problemas de desadaptación y por lo tanto la relación de ondas estacionarias (ROE) se nos va a disparar. Hemos aprendido que, si no tenemos un buen plano de tierra tendremos que "crear" uno incorporandole a la parte interior del techo o capó del vehículo una superficie metálica de 30 x 30 centímetros o más (sirve por ejemplo una chapa de aluminio) y con las uñas de la "araña" de la base de la antena bien hundida en ella para lograr un contacto eléctrico adecuado.

Pero queda aún por aclarar algunos detalles de la instalación si queremos que nuestro equipo funcione de la mejor manera posible. ¿Que haremos si aparece ruido del motor? ¿Como puedo anular o reducir ese infernal ruido que se produce al arrancar y que aumenta conforme pisamos el acelerador? ¿Puedo conectar la alimentación de la emisora a la toma de mechero del vehículo? ¿Como ajusto la antena y le reduzco la relación de ondas estacionarias (ROE) al sistema? ¿Tengo que cortar necesariamente la varilla de la antena para que funcione mejor? ¿Es cierto que cortando (o añadiendo) cable coaxial puedo ajustar la ROE? Todo esto y más en el siguiente artículo.

Leer más...
Miscelanea
Sencillo VU-Meter a diodos LED

Lejos quedan aquellos tiempos en los que todos los medidores, y al decir todos me refiero a TODOS, estaban construidos mediante un galvanómetro y la lectura se realizaba con una aguja que parecía deslizarse al recorrer una escala graduada.

A decir verdad, para aquellos que en cierta manera somos de "la vieja escuela", los referidos medidores, midieran lo que midieran, tenían un encanto muy especial y podría decirse que sentimos "morriña" cuando los recordamos, como diría un gallego al estar lejos de su tierra y escuchar el sonido de una gaita.

Pero llegaron los diodos LED y se hizo la luz. Desde entonces, son muchos y muy variados los VU-Meters, vúmetros o medidores de unidades "VU" (del inglés Volume Unit) que se han desarrollado incorporando este componente electrónico, sobre todo usando la tecnología de la integración.

Pero en este artículo no vamos a publicar la información técnica para construir uno de estos instrumentos con los clásicos circuitos integrados UAA170 o UAA180 ni con cualquier otro. Tampoco vamos a enseñarte a conectar esas "barritas" LED con diferentes diseños. ¡Con ellas practicamente lo tienes todo hecho!.

En este artículo vamos a enseñarte como construir un VU-Meter LED con componentes discretos. ¡Dale ya al "Leer completo..." para saber más!.

Leer más...
Práctica
Cálculo de circuitos con diodos LED

Casi todo el mundo sabe de que se trata cuando se habla de diodos LED, esos pequeños componentes electrónicos que tienen la facultad de iluminarse cuando son atravesados por una corriente eléctrica. Además de que algunos modelos pueden llegar a desarrollar un considerable nivel lumínico el gasto energético que ocasionan es muy pequeño, por lo que en la actualidad ya han aparecido infinidad de lámparas domésticas basadas en ellos para casi todo tipo de aplicaciones.

Sin embargo, y centrándonos en los diodos LED estándar de 3 y de 5 milímetros usados en electrónica, muchos son los que se preguntan como se conectan a una pila o a una fuente de alimentación, quizás para usarlo como testigo de funcionamiento de algún equipo, o para hacer algún trabajo manual del colegio.

Hemos oido comentarios de todo tipo al respecto. Algunos dicen que el LED se conecta a la pila sin más, ya que piensan que funcionan con un determinado voltaje, algo parecido a las lamparitas de las linternas. Otros piensan que hay que poner dos o tres diodos más en serie, porque de lo contrario pueden "fundirse". Algunos no concretan y dicen que además del diodo LED y la pila o batería, el circuito debe de incorporar algún otro componente que lo proteja. ¿Que crees tu?.

El presente artículo tratará de arrojar luz sobre este tema, el cual en muchas ocasiones no está claro en la mente de algunos.

Leer más...
Teoría
Las ondas (III)

Hasta ahora hemos desarrollado varias nociones básicas relacionadas con las ondas, las cuales son importantísimas para poder continuar adelante. Aunque no nos lo parezca ya sabemos muchas cosas sobre las ondas, bastante más de lo que saben muchas personas. Hemos visto la mecánica del movimiento ondulatorio, particularmente en un medio físico como el agua, y hemos llegado a entender que lo que se propaga es la vibración o los impulsos vibratorios y no las moléculas del medio en que se produce la onda. Sabemos también el significado de algunos términos relacionados con ellas, como "cresta", "seno", "longitud de onda" y "amplitud".

Pero aún nos quedan por conocer algunos conceptos mediante los cuales vamos a poder comprender términos relacionados con el radioaficionado que oímos casi a diario. Nos referimos a expresiones como "frecuencia", "megahercios", "kilociclos", "megaciclos", etc. Además veremos también, aunque de manera muy básica, como podemos incluir la información sonora en una señal de radiofrecuencia y de que manera, una vez que haya recorrido su camino, podemos volver a extraerla para aplicarla al altavoz y oirla a miles de kilómetros de distancia. Para ello te invitamos a leer este artículo y los dos siguientes para sumergirte mas de lleno aún en el estudio de las ondas. ¿Te atreves?.

Leer más...
Noticias
Tutoriales electrónicos básicos

Esta obra desarrolla una valiosa información para aquellas personas interesadas en iniciarse en el estudio de la electrónica.

Contiene desde la teoría básica de la electricidad, hasta los amplificadores operacionales y diferenciales, pasando por los componentes pasivos habituales, diodos, transistores bipolares y MOSFET, etc...

Además, resulta interesante la explicación que ofrece su autor sobre las leyes elementales aderezadas con fórmulas simples de asimilar.

Clica en leer completo y échale un vistazo al índice de su contenido.

Leer más...

Preamplificador ecualizado para emisoras

Tal y como comentamos en los artículos dedicados al "Puente de Wien", presentamos en este artículo una aplicación poco común de dicho circuito. Aunque no exactamente trabajando en configuración puente, vamos a usar sus redes RC características para construirnos un pequeño preamplificador ecualizado para usarlo con nuestro equipo de radio.

Gracias a este circuito conseguiremos una modulación perfecta, resaltando los tonos de nuestra voz que más nos convengan, de manera que podremos ofrecer a aquellos que nos oigan una nitidez y transparencia excelentes.

Si tienes el tono de voz demasiado grave podrás disminuir el nivel de las frecuencias bajas y subir las más agudas de manera que se te oiga con más claridad.

Y viceversa, si lo que tienes es un tono de voz muy "chillón" podrás resaltar los sonidos más graves y bajar los tonos más agudos. El resultado puede ser espectacular. ¿Te interesa este tema?. Clica en "Leer completo...".

Hemos de dejar claro que nuestra pretensión no ha sido elaborar un ecualizador de características profesionales. De hecho, tampoco nos hace falta para el uso al que va a estar destinado, tal y como vamos a ver durante el transcurso de este artículo.

Además, debemos tener en cuenta que la canalización de los equipos de radioaficionados no suele superar los 10 KHz. Veamos esto con mas detenimiento ya que es importante para elegir con acierto las frecuencias centrales y el número de las redes de Wien que vamos a necesitar.

LA CANALIZACIÓN
¿Que es la canalización?. Digamos que es el "ancho de banda" del espectro de frecuencias que ocupamos cuando modulamos una señal de radiofrecuencia. Quizás esto te suene a chino, pero seguro que lo comprenderás si lo vemos con un ejemplo.

Supongamos que somos cebeistas y tenemos un precioso transceptor de 27 MHz con 40 canales. Si observamos la distribución de frecuencias de estos canales vemos que la mayoría están separados 10 KHz entre el inmediato inferior o el superior. Por ejemplo, la frecuencia del canal 1 es de 26.965 KHz mientras que el canal 2 tiene una frecuencia de 26.975 KHz, es decir 10 KHz más alta.

La del canal 20 es 27.205 KHz mientras que la del 21 es 27.215 KHz, y la del 22 es 27.225 KHz, conservando siempre una separación de 10 KHz entre ellos.

Así, con esta diferencia de 10 KHz, están distribuidos casi todos los canales contiguos, excepción hecha de los adyacentes a 5 de ellos, denominados usualmente "canales oscuros", los cuales no están presentes en la mayoría de emisoras provocando una separación de 20 KHz, y el "intercambio" o "trueque" entre las frecuencias de los canales 23, 24 y 25 (Ver tabla de frecuencias para CB).

Parece, por tanto, que cada canal "se apodera" de un espacio determinado del espectro de radiofrecuencia. A este espacio que ocupa cada uno de los canales existentes es a lo que se le llama "canalización".

Pero... ¿cual es la razón de que tenga que existir este espacio de 10 KHz para uso exclusivo de cada canal?. ¿De donde viene esta necesidad?. La respuesta está en las llamadas "bandas laterales". ¿Sabes lo que son?.

LAS BANDAS LATERALES
Si eres radioaficionado, lo más seguro es que hayas oido mencionarlas. De hecho es muy probable que sepas que existen 2 bandas laterales, llamadas "USB" (Upper Side Band o Banda Lateral Superior) y "LSB" (Lower Side Band o Banda Lateral Inferior). ¿De donde salen?. ¿Que son exactamente?. Para lograr entenderlo debemos de mirar con detenimiento el resultado de modular una señal de RF en amplitud.

Supongamos que estamos en el canal 21 de la Banda Ciudadana. Como hemos dicho anteriormente, la frecuencia asignada a este canal es de 27.215 KHz y su apariencia, vista "de cerca", sería algo así.

Esta señal de radiofrecuencia, si no está modulada, es una onda senoidal pura sin apenas distorsión (aproximadamente como la hemos representado en el dibujo anterior) y teoricamente solo necesita el espacio que ocupa su frecuencia correspondiente.

Pero en cuanto dicha señal de RF de 27.215 KHz se modula en amplitud por otra señal de BF, de por ejemplo 1 KHz, automaticamente pierde su condición de onda senoidal perfecta.

Desde ese momento, no podemos hablar solo de la existencia de una señal, sino de tres. Me explico.

La señal de RF de 27.215 KHz modulada en amplitud por la señal de BF de 1KHz, sería equivalente a transmitir una señal senoidal de frecuencia 27.215 KHz (la original), otra de 27.214 KHz (resta de las dos primeras 27.215 - 1) de amplitud menor que la original, y otra de 27.216 KHz (suma de las dos primeras 27.215 + 1) también de menor amplitud que la original.

En este último caso, el espacio radioeléctrico ocupado por la señal modulada será mayor que cuando dicha señal permanecía sin modular. Lo representamos a continuación.

Generalizando, si llamamos "Fo" a la frecuencia de la señal de RF original sin modular y "fm" a la frecuencia de la señal de BF moduladora, tendremos que las señales resultantes de modular en amplitud la primera por la segunda serían: Una señal de frecuencia "Fo" llamada "portadora", otra de frecuencia "Fo - fm" de menos amplitud que la anterior llamada "banda lateral inferior" (LSB) y otra de frecuencia "Fo + fm" llamada "banda lateral superior" (USB) y también con menos amplitud que la portadora.

Para ilustrarlo con otro ejemplo, esto significa que si la portadora de 27.215 KHz la modulamos con una señal senoidal de 3 KHz obtendremos, además de la propia portadora, dos bandas laterales; la superior (USB) con una frecuencia de 27.218 KHz (27.215 + 3), y la inferior (LSB) de 27.212 KHz (27215 - 3), ambas con amplitudes menores que la propia portadora.

En esta ocasión el espacio radioeléctrico ocupado por la señal de RF modulada sería todavía mayor, concretamente de 6 KHz, o sea, 3 KHz por parte de la banda lateral inferior y otros 3 por la banda lateral superior.

Sin entrar en muchos más detalles, solo añadir que en la práctica las ondas sonoras de BF que modulan a la portadora no tienen un perfil senoidal sino que presentan una forma irregular. Esto significa que están formadas por una onda senoidal principal llamada "fundamental" y por multitud de señales senoidales de frecuencia múltiplos de la fundamental, llamados "armónicos", cuya amplitud va decreciendo conforme se alejan del valor de la frecuencia fundamental.

Esto da lugar a la formación de dos bandas laterales por cada uno de los armónicos de la señal moduladora de BF, las cuales se suman a las dos bandas laterales que produce la onda fundamental.

Los equipos de radioaficionados están diseñados basicamente para trabajar con voces humanas. El tono fundamental de la voz humana se encuentra, dependiendo de la persona (hombre, mujer, niño, niña), entre 100 y 300 Hz pero sus armónicos se extienden mucho más allá, pudiendo llegar en algunos casos hasta los 8.000 Hz.

No obstante, para la transmisión de señales de voz en los equipos de radio se sacrifica la fidelidad y se evita que las frecuencias moduladoras sobrepasen los 4.500 Hz. Con ello tendremos, además de la portadora, dos bandas laterales que se extenderán 4.500 Hz para arriba y otros 4.500 Hz para abajo de la frecuencia central original.

Siguiendo con el ejemplo anterior, supongamos que seguimos en el canal 21 de la Banda Ciudadana. Este se extenderá desde 27.210,5 KHz (27.215 - 4,5) hasta 27.219,5 KHz (27.215 + 4,5). Sin embargo, para tener la seguridad de que dos canales adyacentes o contiguos no van a solaparse, sus portadoras se separan 10 KHz y no 9 como sería de esperar, dejando un espacio "vacío" de 1 KHz entre cada canal. La distribución del "ancho de banda" queda tal y como lo representamos en la siguiente ilustración.

Exactamente el mismo criterio técnico se sigue en la banda comercial de Onda Media utilizada en América y Australia. Sin embargo, en Europa la separación entre portadoras se reduce a 9 KHz.

Hasta ahora hemos aprendido cosas muy interesantes, pero desde luego, lo que más nos interesa en lo que respecta a lo que estamos estudiando en este artículo, es saber que en las transmisiones de radioaficionados no se superan las frecuencias de audio superiores a 4.500 Hz.

EL CIRCUITO DEL ECUALIZADOR
Teniendo en mente la gama de posibles frecuencias de la señal moduladora a transmitir tenemos ya sentadas las bases para la elección de las frecuencias centrales de las redes Wien de nuestro ecualizador. En un principio, a nosotros nos ha parecido bien de acuerdo con lo visto hasta ahora, las siguientes: 200 Hz para la parte baja de la gama, unos 900 Hz para la gama media, y por último 3400 Hz para la gama de los sonidos más agudos.

Hemos de tener en cuenta que estas son las frecuencias centrales de cada célula Wien. Esto significa que la suma del ancho de banda de cada una de ellas cubrirá perfectamente toda la gama de frecuencias que necesitamos, hasta llegar a los 4.500 Hz necesarios. El esquema eléctrico del circuito es el siguiente.

Nos han parecido suficientes tres células Wien para una gama de frecuencias tan corta. No obstante, es sumamente fácil añadir las que cada cual considere necesarias. ¿Recordáis la fórmula para calcularlas?.

Las tres redes Wien las hemos colocado entre sendos transistores en configuración de emisor común, lo cual compensa de sobra la atenuación que introducen las primeras. Incluso obtenemos cierta amplificación adicional ya que la ganancia de los transistores supera a las pérdidas inherentes de las células Wien.

Por otra parte, el circuito no requiere ningún tipo de ajuste por lo que ha de funcionar desde el primer momento sin ningún problema.

 
C O M E N T A R I O S   
RE: Preamplificador ecualizado para emisoras

#1 JuanApocalipsis » 14-04-2017 06:43

Como adicionar canales altos y subterraneos a mi CB Royce R 638.

Atte.

Juan

NO ESTÁS AUTORIZADO PARA COMENTAR
Por favor, regístrate e identifícate en el sistema. Gracias.